Semiconductor devices having interconnections using...

Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead – Ball or nail head type contact – lead – or bond

Utility Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S772000, C257S778000, C257S738000, C257S693000, C257S725000, C438S613000, C438S118000

Utility Patent

active

06169329

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to a process for forming semiconductor die-to-substrate conductor interconnections and, more specifically, to a process for forming standardized bonding locations for varying die sizes, configurations, bond pad arrangements and circuitry, and a semiconductor die assembly formed therefrom.
2. State of the Art
The first integrated circuits became available in the late 1960s having a minimal number of circuits on each chip of silicon. These first components typically included aluminum or gold-based, thin-film traces to integrate the active and passive devices embedded in the silicon. Since these first simple semiconductor devices, the circuit count per die has grown exponentially. In the early 1970s, bipolar logic chips had about 100 circuits and monolithic memory had 128 bits forming the first commercial, bipolar main memory. Since then, the number of logic circuits has grown to over 10,000 per chip (bipolar) and one gigabit memory chips, with FET transistors replacing bipolar.
The active component or device integration and densification process in integrated circuits has motivated a continuous and ongoing migration of intercircuit wiring and connections from boards, cards, and modules to the chip itself. The surface of the chip, with its multilayer wiring, has become a microcosm of the conductor and insulator configurations that were common on previous multilayer printed-circuit boards and multilayer ceramic packages. A logic chip with 700 circuits and three layers of wiring has approximately 5 m of aluminum wiring on a chip less than 5 mm square. There are over 17,000 via connections from level to level through a micron-thick insulator film of SiO
2
. Yet, the conductor capacity in the chip greatly lags behind the densification of the silicon devices. Most of the area of the chip (approximately two-thirds), still serves as a platform for the wiring.
Heretofore, serial wirebonding of one or two rows of bond pad input/outputs (I/Os) around the perimeter or down the center of the chip to leads, and sometimes buses of a leadframe, has satisfied the needs of most ceramic or plastic dual in-line packages. Automated wirebonding today is very fast, efficient, and reliable compared to the manual bonding of the 1960s. Wirebonding, however, appears to be yielding for some applications to TAB bonding, in which the density of perimeter connections can be doubled or tripled and all bonds made simultaneously. Solder-bumped connections have evolved into an area array or pattern configuration in which a large portion of the surface of the chip is covered with controlled collapse chip connections (C4s) for the highest possible I/O counts. Unlike wirebonding, C4 usually dictates solder bump formation on the active surface of the chip when the chip is in wafer form. Typically, in such structures, a layer of silicon oxide, silicon nitride, or polyimide passivation must be formed over the final wiring level on the active surface of the chip before formation of the bumps. This has become a commonplace precaution to protect the fine wiring from corrosion and mechanical damage, even in advanced wirebonded chips.
Solder-bump interconnection was initiated in the early 1960s to eliminate the expense, unreliability, and low productivity of manual wirebonding. Whereas the initial, low-complexity, low circuit density chips typically required only peripheral contacts or bond pads, solder-bump technology has allowed considerable extendibility in I/O density as it progressed to full-population area arrays. Typically, C4s utilize solder bumps deposited on wettable metal pads on the chip and a matching footprint of solder wettable terminals at the ends of circuit traces carried by the substrate. The upside-down chip (commonly referred to as a flip chip) is aligned to the substrate, and all joints are made simultaneously by reflowing the solder. It is also known to employ conductive polymer bumps or polymers loaded with conductive particles in lieu of solder bumps in arrays. Fine pitch bump arrays have been generally termed “ball grid arrays,” or “BGAs,” in the art.
In addition to the densification of C4s or other conductive bumps on a given die (also interchangeably referred to in the art as a “chip”), technological advances in the art have decreased the overall size of semiconductor dies (for a given circuit density). Further, due to ongoing advances in circuit component design and fabrication technology, a given die may be “shrunk” one or more times during its commercial lifespan to enhance per-wafer yield, device speed and performance, and quality. In addition, similar dies from different manufacturers may be of different size and/or shape, but are adaptable to use on the same printed circuit board or other conductor-carrying substrate. Consequently, the need to allow for varying sized dies for a given substrate has been recognized. For example, U.S. Pat. No. 5,168,345 discloses a substrate having a plurality of conductive leads arranged in a generally radial pattern to which dies of various sizes may be attached. Likewise, in U.S. Pat. No. 5,327,008, a universal leadframe is disclosed which is suitable for use with many different die sizes. In both of the foregoing patents, bond wires are employed to connect die bond pads to lead frame leads.
Such arrangements, however, are not practical for bump-type interconnections (flip-chip bonding) of dies having markedly different bond pad patterns thereon, due to the precise mutual locational requirements of the bump interconnections and the matching terminals or other connector structures on a substrate or other carrier. Thus, it would be advantageous to provide a bumped die to which a standardized array of terminals or trace ends of a substrate or other carrier such as a leadframe could be bonded, regardless of die size or bond pad pattern. Thus, a single substrate or leadframe conductor configuration might be employed to accommodate different generations of the same die or different die altogether.
SUMMARY OF THE INVENTION
Accordingly, the present invention comprises a process of making a semiconductor die having a standardized array of external connections formed thereon and the resulting die and die assembly. That is, a given semiconductor die has a set pattern, pitch and size (also termed an array) of external connections formed on its active surface so that it may physically and electrically mate with a substrate or other carrier having a substantially identical standardized array of trace ends, terminals or other contact structures. As the size of the die is reduced during product development, the newly formed die (commonly referred to as a shrink) has the same configuration and size of array of external connections formed thereon for joining with a substrate. Thus, a single substrate trace end or terminal configuration matching the external connection pattern of the first, oversize generation of a given die will also be usable for subsequent generations of smaller dies.
Similarly, dies from different manufacturers or other dies having differing bond pad patterns may be reconfigured according to the invention with identical I/O bump patterns. For example, a die with two parallel rows of peripheral bond pads, a die with one or two central rows of pads, a die with a hybrid pad pattern of a central pad row with a transverse peripheral row of pads at each end, and a die with pads along all four sides may be reconfigured to a common I/O array pattern.
The die of the invention has a plurality of external contact or connect (bond) pads formed on its surface, to which a plurality of external connections residing on the die are connected by conductive traces extending between the contact pads and the external connections. The contact pads and traces may be at least partially covered by a dielectric material, such as a polyimide or other suitable material known in the art.
In a preferred embodiment, the size of the die employing a standardized external connection (I/O) array can be

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor devices having interconnections using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor devices having interconnections using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor devices having interconnections using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2536470

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.