Toner particles of controlled morphology

Radiation imagery chemistry: process – composition – or product th – Electric or magnetic imagery – e.g. – xerography,... – Process of making developer composition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S109500, C430S110100

Reexamination Certificate

active

06207338

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a method for the preparation of polymeric powders suitable for use as electrostatographic toner, and more particularly, to a method for the preparation of toner particles of controlled shape in which soluble aluminum or gallium salts are employed for controlling morphology of the toner particles.
BACKGROUND OF THE INVENTION
Electrostatic toner polymer particles can be prepared by a process frequently referred to as “limited coalescence”. In this process, polymer particles having a narrow size distribution are obtained by forming a solution of a polymer in a solvent that is immiscible with water, dispersing the solution so formed in an aqueous medium containing a solid colloidal stabilizer and removing the solvent by evaporation. The resultant particles are then isolated, washed and dried.
In the practice of this technique, toner particles are prepared from any type of polymer that is soluble in a solvent that is immiscible with water. Thus, the size and size distribution of the resulting particles can be predetermined and controlled by the relative quantities of the particular polymer employed, the solvent, the quantity and size of the water insoluble solid particulate suspension stabilizer, typically silica or latex, and the size to which the solvent-polymer droplets are reduced by agitation.
Limited coalescence techniques of this type have been described in numerous patents pertaining to the preparation of electrostatic toner particles because such techniques typically result in the formation of toner particles having a substantially uniform size distribution. Representative limited coalescence processes employed in toner preparation are described in U.S. Pat. Nos. 4,833,060 and 4,965,131 to Nair et al.
U.S. Pat. No. 5,283,151 is representative of earlier work in this field and describes the use of carnauba wax to achieve similar toner morphology. The method comprises the steps of dissolving camauba wax in ethyl acetate heated to a temperature of at least 75° C. and cooling the solution, so resulting in the precipitation of the wax in the form of very fine needles a few microns in length; recovering the wax needles and mixing them with a polymer material, a solvent and optionally a pigment and a charge control agent to form an organic phase; dispersing the organic phase in an aqueous phase comprising a particulate stabilizer and homogenizing the mixture; evaporating the solvent and washing and drying the resultant product.
Unfortunately, this technique requires the use of elevated temperature to dissolve the wax in the solvent and cooling the solution to precipitate the wax. The wax does not stay in solution of ethyl acetate at ambient temperature and as a result it is very difficult to scale up using this methodology.
The shapes of the toner particles have a bearing on the electrostatic toner transfer and cleaning properties. Thus, for example, the transfer and cleaning efficiency of toner particles have been found to improve as the sphericity of the particles are reduced. Thus far, workers in the art have long sought to modify the shape of the evaporative limited coalescence type toner particles by means other than the choice of pigment, binder, or charge agent. The shape of the toner particles are modified to enhance the cleaning and transfer properties of the toner.
SUMMARY OF THE INVENTION
In accordance with the present invention, the prior art limitations are effectively obviated by a novel process in which aluminum or gallium salts are introduced into the aqueous phase of the limited coalescence process in a limited amount. The use of this limited amount of aluminum or gallium salt results in the formation of non-spherical toner particles after the solvent is removed. The toner morphology is controlled independently of the toner composition (resin, binder matrix, pigment, charge control agent, etc.). The degree of nonsphericity is directly related to the salt concentration.
Thus, viewed from one aspect, the present invention is directed to a method for the preparation of electrostatographic toner comprising the steps of:
a) dissolving a polymer material and optionally a pigment and a charge control agent in an organic solvent to form an organic phase;
b) dispersing the organic phase in an aqueous phase comprising a salt selected from the group consisting of aluminum salt and gallium salt and a particulate stabilizer to form a dispersion and homogenizing the resultant dispersion;
c) evaporating the organic solvent and recovering a resultant product; and
d) washing and drying the resultant product.
Viewed from another aspect, the present invention is directed to a process for preparing electrophotographic toner by dispersing an organic phase in an aqueous phase to yield a layer of particulate suspension stabilizer on the surface of the polymer. The improvement in the process comprises adding the salt, particulate stabilizer and promoter to the aqueous phase in the aforementioned limited coalescence process.
It is an advantage of the present invention that elevated temperatures are not needed. It is also an advantage that aluminum and gallium salts are water soluble and so it is relatively easy to scale up production.
These and other features and advantages of the present invention will be better understood taken in conjunction with the following detailed description and claims.
DETAILED DESCRIPTION OF THE INVENTION
In accordance with the present invention, a pigment dispersion is prepared by conventional techniques as, for example, by media milling, melt dispersion and the like. The pigment dispersion, polymer material, a solvent and optionally a charge control agent are combined to form an organic phase in which the pigment concentration ranges from about 4% to 20%, by weight, based upon the total weight of solids. The pigment to aluminum or gallium salts ratio ranges from about 1:0.5 to 1:0.06 by weight. The charge control agent is employed in an amount ranging from 0 to 10 parts per hundred by weight, based on the total weight of solids, with a preferred range from 0.2 to 3.0 parts per hundred. This mixture is permitted to stir overnight and then dispersed in an aqueous phase comprising a particulate stabilizer and optionally a promoter.
The solvents chosen for use in the organic phase steps may be selected from among any of the well-known solvents capable of dissolving polymers. Typical of the solvents chosen for this purpose are chloromethane, dichloromethane, ethyl acetate, vinyl chloride, methylethylketone, n-propyl acetate, iso-propyl acetate, trichloromethane, carbon tetrachloride, ethylene chloride, trichloroethane, toluene, xylene, cyclohexanone, 2-nitropropane and the like.
The particulate stabilizer selected for use herein may be selected from among highly cross-linked polymeric latex materials of the type described in U.S. Pat. No. 4,965,131 to Nair et al., or silicon dioxide. Silicon dioxide is preferred. It is generally used in an amount ranging from 1 to 15 parts by weight based on 100 parts by weight of the total solids of the toner employed. The size and concentration of these stabilizers control and predetermine the size of the final toner particles. In other words, the smaller the size and/or the higher the concentration of such particles, the smaller the size of the final toner particles.
Any suitable promoter that is water soluble and affects the hydrophilic/hydrophobic balance of the solid dispersing agent in the aqueous solution may be employed in order to drive the solid dispersing agent, that is, the particulate stabilizer, to the polymer/solvent droplet-water interface. Typical of such promoters are sulfonated polystyrenes, alginates, carboxy methylcellulose, tetramethyl ammonium hydroxide or chloride, diethylaminoethylmethacrylate, water soluble complex resinous amine condensation products of ethylene oxide, urea and formaldehyde and polyethyleneimine. Also effective for this purpose are gelatin, casein, albumin, gluten and the like or non-ionic materials such as methoxycellulose. The promote

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Toner particles of controlled morphology does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Toner particles of controlled morphology, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Toner particles of controlled morphology will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2534499

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.