System and method for measuring channel quality information...

Pulse or digital communications – Systems using alternating or pulsating current – Plural channels for transmission of a single pulse train

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S265000, C375S325000, C375S340000, C375S341000, C714S792000, C714S794000, C714S795000

Reexamination Certificate

active

06215827

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to digital communication systems and, more particularly, to communications systems which utilize digital transmission schemes.
As communication systems continue to grow worldwide at a rapid pace, the need for frequency spectrum efficient systems that accommodate both the expanding number of individual users and the new digital features and services such as facsimile, data transmission, and various call handling features is evident.
As an example, current wireless data systems such as the cellular digital packet data (CDPD) system and the IS-130 circuit switched time division multiple access data system support only low fixed data rates that are insufficient for several applications. Since cellular systems are engineered to provide coverage at the cell boundary, the signal to interference plus noise ratio (abbreviated as SIR, SNR, or C/(I+N)) over a large portion of a cell is sufficient to support higher data rates. Existing adaptive data rate schemes using bandwidth efficient coded modulation are currently being proposed for increasing throughput over fading channels such as those encountered in mobile radio wireless systems. However, these schemes do not dynamically adjust the coded modulation to adapt to the channel conditions.
Coded modulation schemes with different bandwidth efficiencies have different error rate performances for the same SIR per symbol. As result, at each SIR, the coded modulation scheme that results in the highest throughput with acceptable retransmission delay is desired. Therefore, the detection of channel quality in terms of SIR or achievable frame error rate is very important. As an example, fast and accurate methods to measure either the SIR or to estimate the FER are not available for cellular systems. Thus, there is a need to determine the channel quality based on the measurements, or metrics, of the SIR or the achievable frame error rate (FER) for the time varying channel.
The difficulty in obtaining these metrics in communications systems such as cellular systems is based on the time varying signal strength levels found on the cellular channel. These time varying effects, referred to as fading and distance dependent loss, are the result of the movement of the mobile station (cellular phone) relative to the base station (also known as a cell site). Some recent schemes propose a short-term prediction of the FER, but not the SIR, using the metric for the second best path in a Viterbi decoder. This metric is computationally very intensive and reacts to short term variations in fading conditions. Therefore, there is a need, for an efficient and accurate method for measuring the channel quality in terms of the SIR in a communication system.
Thus, there is a need to determine the channel quality of a communication system based on the measurements (metrics) of the SIR or the achievable frame error rate (FER) for the time varying channel in a digital transmission scheme to obtain a quick and reliable indicator of SIR in noise limited, interference limited and delay spread environments. This need extends for example, to coherent schemes such as M-ary phase shift keying (M-PSK) signaling and non-coherent schemes such as M-DPSK signaling
It is also important to measure channel quality, in terms of SIR or FER, for the purpose of mobile assisted handoff (MAHO) and power control. However, FER measurements are usually very slow for the purpose of rate adaptation, power control and handoff. FER as a channel quality metric is slow because it can take a very long time for the mobile to count a sufficient number of frame errors. Therefore, there is a need for a robust short-term channel quality indicator that can be related to the FER.
As a result, channel quality metrics such as symbol error rate, average bit error rate and received signal strength measurements have been proposed as alternatives. The IS-136 standard already specifies measurement procedures for both bit error rate and received signal strength. However, these measures do not correlate well with the FER, or the SIR, which is widely accepted as the meaningful performance measure in wireless systems. Also, received signal strength measurements are often inaccurate and unreliable. Thus, the SIR is a more appropriate as a handoff metric near the cell boundary where signal quality is rapidly changing.
The present invention is directed to overcoming, or at least reducing the effects of one or more of the problems set forth above.
SUMMARY OF THE INVENTION
This invention and methods are directed to determining the SIR for a digital communication system with a fading channel. While the following examples are directed to wireless communications such as cellular telephones the invention and methods descried apply equally well to non-wireless communications.
In this invention, the above problems discussed in the background of the prior art are solved, and a number of technical advances are achieved in the art by use of the appropriate weighted decoder metric for the maximum likelihood path as a measure of the SIR per symbol.
In accordance with one aspect of the present invention a system and method is provided for determining the path metrics of the communication system corresponding to a set of predetermined SIR values. A digital signal is received and a path metric determined for the digital signal. Mapping of the path metric is provided to a corresponding SIR in the set of predetermined SIR values.
These and other features and advantages of the present invention will become apparent from the following detailed description, the accompanying drawings and the appended claims. While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention as described in the appended claims.


REFERENCES:
patent: 5737365 (1998-04-01), Gilbert et al.
patent: 5764699 (1998-06-01), Needham et al.
patent: 5905742 (1999-05-01), Chennakeshu et al.
patent: 6002715 (1999-12-01), Brailean et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for measuring channel quality information... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for measuring channel quality information..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for measuring channel quality information... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2533718

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.