Image analysis – Applications – Biomedical applications
Reexamination Certificate
1998-06-05
2001-08-28
Bella, Matthew C. (Department: 2721)
Image analysis
Applications
Biomedical applications
C382S133000, C600S300000
Reexamination Certificate
active
06282305
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS AND PUBLICATIONS
The present is related to automated techniques for automated detection of abnormalities in digital images, for example as disclosed in one or more of U.S. Pat. Nos. 4,839,807; 4,841,555; 4,851,984; 4,875,165; 4,907,156; 4,918,534; 5,072,384; 5,133,020; 5,150,292; 5,224,177; 5,289,374; 5,319,549; 5,343,390; 5,359,513; 5,452,367; 5,463,548; 5,491,627; 5,537,485; 5,598,481; 5,622,171; 5,638,458; 5,657,362; 5,666,434; 5,673,332; 5,668,888; 5,732,697; 5,790,690; 5,832,103; 5,873,824; 5,881,124; 5,931,780; 5,974,165; 5,982,915; 5,984,870; 5,987,345; as well as U.S. application Ser. Nos. 08/173,935; 08/398,307; 08/536,149; 08/562,087; 08/900,188; 08/900,189; 08/900,191; 08/979,623; 08/979,639; 08/982,282; 09/028,518; 09/027,685; and 09/053,798 each of which are incorporated herein by reference in their entirety.
The present invention also relates to technologies referenced and described in the references identified in the appended APPENDIX and cross-referenced throughout the specification by reference to the number, in brackets, of the respective reference listed in the APPENDIX, the entire contents of which are also incorporated herein by reference. Various of these publications may correspond to various of the cross-referenced patents and patent applications.
BACKGROUND OF THE INVENTION
1. Field of the Invention:
The invention relates generally to a method and system for computerized assessment of breast cancer risk.
Breast cancer risk assessment provides an opportunity to devise appropriate surveillance plans that may include enhanced screening for women at increased risk of breast cancer. Computerized analysis of mammographic parenchymal patterns may provide an objective and quantitative characterization and classification of these patterns, which may be associated with breast cancer risk. Computerized assessment of breast cancer risk based on the analysis of mammograms alone or combined with epidemiologic risk factors (for example, age) may serve as an alternative to current existing clinical methods, which are costly and/or information-dependent, in predicting breast cancer risk.
2. Discussion of the Background:
The breast is composed primarily of two components, fibroglandular tissue and fatty tissue. The average breast consists of 50% fibroglandular tissue and 50% fat. Fibroglandular tissue is a mixture of fibrous connective tissue and the glandular epithelial cells that line the ducts of the breast (the parenchyma). The major breast diseases develop from the terminal ductal lobular units of the breast, and arise predominantly from the epithelial cells that line the ducts; however, the fibrous or connective tissue can also be involved. It is thought by most experts that malignant breast disease develops through a process that starts with epithelial hyperplasia, i.e., an increase in the number of epithelial cells. Epithelial hyperplasia can progress to atypical hyperplasia in which the epithelial cells not only increase in number, but also change in a way that is not normal for these cells. The process, at this stage, is believed to be reversible. Once a certain criterion level of atypia is reached, the diagnosis of carcinoma-in-situ can be made, in which there is no invasion of malignant cells outside of the duct. The process of malignant transformation is considered irreversible at this stage. In the last phase of development, the cancer cells break out of the ductal walls and invade the surrounding stromal tissue, and at this point the disease is called infiltrating or invasive carcinoma. Most (80%-85%) breast carcinomas can be seen on a mammogram as a mass, a cluster of tiny calcifications, or a combination of both. Other mammographic abnormalities are of lesser specificity and prevalence than masses and/or calcifications, and include skin or nipple changes, abnormalities in the axilla, asymmetric density, and architectural distortion.
Early detection of breast cancer can improve survival rates. The overall five-year survival rate for women diagnosed with breast cancer is 84%, but when found at a small, localized stage, the 5-year survival rate is 97% [1]. Studies show that use of screening mammography can reduce lesion size and stage at detection, improving the prognosis for survival. Currently, mammography is a well-established imaging technique for early detection of breast cancer. Annual screening mammography is recommended by the American Cancer Society for all women over the age of 40 [1].
Clinical acquisition of x-ray mammograms is a rather complicated procedure and requires specific techniques in order to obtain high quality images. Attenuation differences between various structures within the breast contribute to image contrast. Due to the similar composition of breast structures and the physical manifestations of breast carcinoma, screen-film mammographic imaging must be substantially different from general radiographic imaging. Low-energy x-rays are required to enhance the ability to differentiate between normal tissues and carcinoma. The radiological appearance of the breast varies between individuals because of variations in the relative amounts of fatty and fibroglandular tissue. Since fat has a lower effective atomic number than that of fibroglandular tissue, there is less x-ray attenuation in fatty tissue than in fibroglandular tissue. Fat appears dark (i.e., higher optical density) on a mammogram, while fibroglandular tissue appears light (i.e., lower optical density) on a mammogram. Regions of brightness associated with fibroglandular tissue are normally referred to as “mammographic density”.
Screening mammography typically includes two standard radiographic projections, medio-lateral oblique (MLO) and cranio-caudal (CC), that are taken of each breast (right and left) for a total of four images. The purpose of these two views is to completely image the breasts and, if any lesions are present, allow localization and preliminary characterization.
Breast cancer risk assessment provides an opportunity to devise appropriate surveillance plans that may include enhanced screening for women at increased risk of breast cancer. Computerized analysis of mammographic parenchymal patterns may provide an objective and quantitative characterization and classification of these patterns, which may be associated with breast cancer risk. Computerized assessment of breast cancer risk based on the analysis of mammograms alone or combined with epidemiologic risk factors (for example, age) may serve as an alternative to current existing clinical methods, which are costly and/or information-dependent, in predicting breast cancer risk.
As the best method for early detection of breast cancer, annual screening mammography has been recommended for women over 40 years of age [1]. Mammographic surveillance for women under age 40 years who are at very high risk of developing breast cancer, however, still remains an issue, since the benefit of screening women in this age group has not been proven. Women at high risk of developing breast cancer tend to develop breast cancer at a younger age [2]. Identification and close follow-up of these high-risk women may provide an opportunity for early breast cancer detection. Thus, computerized methods that are capable of assessing breast cancer risk may allow women and their physicians to devise an individualized surveillance plan that may include enhanced screening for women at high risk for early detection of breast cancer. These plans may lead to improvements in the overall efficacy of screening mammography for early detection of breast cancer. Further, knowledge of which women are at high risk of developing breast cancer has important implications in the study of breast cancer.
There are two widely used methods to measure risk: relative risk and absolute risk [16]. Relative risk is defined as the ratio of age-specific breast cancer incidence rate among women with specific risk factors to the incidence rate among women without known risk
Giger Maryellen L.
Huo Zhimin
ARCH Development Corporation
Bella Matthew C.
Oblon & Spivak, McClelland, Maier & Neustadt P.C.
LandOfFree
Method and system for the computerized assessment of breast... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for the computerized assessment of breast..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for the computerized assessment of breast... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2532094