Safe and secure commercial air transportation

Aeronautics and astronautics – Composite aircraft – Trains

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C244S016000

Reexamination Certificate

active

06220543

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
1. Technical Field
This invention relates to aerotransportation, specifically to ensuring mass commercial aviation safety and security.
2. Description of the Related Art
One of the crucial areas to civil aviation overall mission is ensuring commercial aviation safety and security. In general, there is an acute need to eliminate or at least mitigate greatly the tragic consequences of airborne accidents in the form of lethal crashes. Whatever that was their reason is of no concern, be it terroristic attack, technical failure, or human error. Currently, onboard occupants (crew and passengers) of commercial flights are factual hostages of menacing airborne conditions. While even combat pilots have real chances to survive in such a situation because of parachute facilities aboard, commercial airliners are deprived of any airborne rescue means at all, despite their far bigger sizes, mass, and onboard population, dictating the high landing speed, big landing field, complicated and heavy landing gear, and superior surface qualities. Responding to growing demand for air transportation, major aircraft makers have chosen an inadequate, in terms of safety and security, path of developing even bigger airliners, thus just increasing twice . . . thrice the number of the possible hostages aboard and diminishing the survivability due to far bigger sizes and mass of the next generation of airliners. This is tantamount to a development of a single only railroad locomotive with a crew, passengers, cargo, engine, and fuel on itself, growing in size enormously as demand for railroad transportation increases.
The most frequent and dangerous menace for security is the bomb threat. According to the National Transportation Safety Board, the bomb threats only in US airports during 1993-1995 amounted to an average of 300 threats per year, almost each and every day.
Since sizes and capacity of passengers airliners, let alone the overall amount of passengers and flights, have the apparent tendency for a fast increase, consequences of realization of such bomb threats would be even more horrible than the tragic fate of Flights 103, 592, 800 and others.
This problem of prevention of catastrophic consequences from bomb explosion in cargo hold of a passenger airplane has been partially solved by two current main ways: first, seeking detection and screening of explosives while passenger and baggage processing at commercial airports, and, if unsuccessfully, second, bomb damage mitigating by use of constructive features of cargo hold to make it bomb-proof through hardening and fast decompressing.
However, both ways had and still have significant drawbacks: they are complex, expensive, though yet unreliable and ineffective.
First way of detection and screening explosives and peoples in hardly effective and reliable, in spite of huge, though vain, expenditures of time, money, and efforts, by reason of both deficiencies in methods and means of detection and screening themselves, and their not quite diligent use.
Indirectly, it has been proved by necessity of further second way for ensuring security. It is bomb damage mitigating, also ineffective and unreliable, by reason of inherent airliner being as flying fuel tanker (fuel accounts for about two thirds of the take-off weight) filled with electrical power and communicative cables, wiring, and devices. So, even the weakest initial explosion might be sufficient to detonate further catastrophic exploding with fatal damage.
System for passenger and luggage processing at commercial airports in U.S. Pat. No. 4,137,567 to Grube, Jan. 30, 1979, has all cited drawbacks of the first way. It is imperfectness of detecting methods and means themselves, including even sniffling dogs, and inadequate diligence of staff lacking vigilance owing to facing permanently a check of a multitude of passengers and baggage for limited time, comparative infrequency of real dangerous events, and very low salary.
Air cargo container with bomb damage mitigation features in U.S. Pat. No. 5,195,701 to Willan, Mar. 23, 1993, has venting device to pierce the fuselage wall of an airplane and vent shock waves and gas outside. While it is believable the device pierces the fuselage, though hardly—or even not—harmlessly for the airplane, there is no assurance that all of gas and shock waves would leave through this hole proposed, and the airplane would not undergo any dangerous impacts.
There were also different models of combat transport gliders with pure military use which performed well during WWII owing to their following features: providing mobility to ground troop units, lacking any special parachute training, to leap over natural obstacles and enemy defenses, and to be ready at once to combat, not scattered around like paratroopers landed; stealth and silence of assault to take advantage of terror and unreadiness of enemy; cheapness and ease to produce, use, and learn to use; and double or triple increase of a combat airplane capability to deliver troops and arms. However, not before or since that war such gliders have ever been used in another war, and they have never been used in civil aviation at all, let alone ensuring its security. At that time the problem of counteracting terrorist attempts of bomb exploding did not come in existence yet.
There is an apparent reason the problem of onboard occupants' survivability in crashes has not been solved: while mass passenger aerotransportation has comparatively short history of about 40 years, and terrorist bomb threats have even shorter one, these crashes are rather seldom. So, unsteady efforts to resolve the problem are really cyclical greatly boosting just after a latest crash and fading in time.
It is understandable, because there is no real commercial profit from enhancing aviation safety and security to be driving force for such efforts, not counting reduction of insurance indemnification to families of victims. Without adequate profit, destroyed lives of these victims can hardly- or even if- move the big companies to required big investments in research and development for aviation safety and security.
The present invention, providing significant commercial profit concurrently with enhancing aviation safety and security, offers the real incentive for private sector entities to involve deeply in the vitally important part of aerotransportation improvement.
BRIEF SUMMARY OF THE INVENTION
The proposed invention for safe commercial air transportation overcomes the deficiencies of the current technology through eliminating or, at least, mitigating dramatically the consequences of airliner crashes, and provides concurrently accommodating additional passengers aboard by separating a tow airplane with engine and fuel from passengers being inside towed payload gliders forming an aerotrain with the tag airplane snatching off the landing field, delivering to destination by towing, and then releasing the single passenger and/or cargo gliders landing on their own for different local destinations or purposes, without landing there the airplane itself.
Accordingly, several main objects and advantages of my invention are its reliability, effectiveness, simplicity, and cheapness, providing satisfaction of the vital existing wants and needs of society for dependable aviation safety and security, and accompanied by: eliminating or reducing expenditures and inconvenience of long troublesome baggage check; increasing the seating capacity on the airplane; savings in costs of the baggage carriage; enlarging nonstop flight range.
Other objects and advantages are: simplicity, compactness, soundness, durability, reliability, and reparability of structure and equipment involved, long life cycle because of absence of moving parts; ease and cheapness to produce, distribute, use, train to use, and to meet service requirements; novel, reliable, and higher quality result compared to current ways of ensuring security; operability, compatibility with existing technol

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Safe and secure commercial air transportation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Safe and secure commercial air transportation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Safe and secure commercial air transportation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2530646

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.