Process for preparing hydroxybenzoic esters of oxo alcohols

Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acid esters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06218567

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a process for preparing hydroxybenzoic esters of oxo alcohols by esterification of hydroxybenzoic acids or transesterification of hydroxybenzoic esters of lower alcohols with reaction mixtures from the oxo process in the presence of a particular acid catalyst.
2. Description of the Background
Esters of hydroxybenzoic acids and in particular 4-hydroxybenzoic acid with higher alcohols, as are obtained from olefins by the oxo process (or hydroformylation), viz. “oxo alcohols”, are used to an increasing extent as plasticizers for polymers, in particular for polyamides and polyesters.
Processes for preparing
4
-hydroxybenzoic esters by esterification of the free acid with alcohols using solvents such as benzene (V. Varill, J. Chem. Soc. Ind. London 66 (1947) 175, 176), acetone (JP 53112-634) or dioxane (JP 77048-966) are known. These processes employ pure, previously distilled alcohols. In these cases, the solvents are employed as diluents to ensure the stirrability of the reaction mixtures and are sometimes also employed as entrainers for the water of reaction which is formed.
SUMMARY OF THE INVENTION
Accordingly, one object of the present invention is to provide a process for preparing esters of hydroxybenzoic acids with oxo alcohols in which pure, previously distilled alcohols do not have to be used.
Another object of the invention is to provide a process for preparing such esters which does not require the presence of solvents.
Briefly, these and other objects of the present invention as hereinafter will become more readily apparent can be attained by a process for preparing hydroxybenzoic esters of oxo alcohols, which comprises:
esterifying a hydroxybenzoic acid with an oxo alcohol in the reaction mixture from the hydroformylation of olefins, which reaction medium contains various materials which are found in such a reaction medium, in the presence of an acid catalyst.
In another embodiment of the invention for preparing hydroxybenzoic esters of oxo alcohols a hydroxybenzoic ester of a lower alcohol is transesterified with an oxo alcohol under the same conditions.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the process of the invention, the other materials present in the reaction mixtures obtained from hydroformylation at the same time act as diluents for the reaction mixture and as entrainers for the water of reaction. As a result of using reaction mixtures from the oxo process in place of pure oxo alcohols and not adding solvents as has been done in prior art processes, the process costs can be reduced significantly.
The preferred hydroxybenzoic acid is 4-hydroxybenzoic acid which is prepared on an industrial scale by oxidation of p-cresol. Hydroxybenzoic esters of lower alcohols, in particular C
1
-C
4
-alkanols, are prepared by esterification of the acids with an excess of the respective lower alkanol. The alkanols must have lower boiling points than the oxo alcohols whose esters are to be prepared. The direct esterification of the hydroxybenzoic acids with oxo alcohols is given preference over the transesterification.
Preferred oxo alcohols contain from 7-21 carbon atoms. They are prepared from olefins having from 6-20 carbon atoms by reaction with carbon monoxide and hydrogen at elevated temperature and under superatmospheric pressure in the presence of cobalt or rhodium catalysts (“oxo process” or “hydroformylation”). The starting olefins are frequently isomeric oligomers of lower olefins, e. g. dibutene, tripropylene, tetrapropylene and tetrabutene. The oxo alcohols are accordingly likewise isomer mixtures. It is an essential feature of the process of the invention that the oxo alcohols are esterified or transesterified in the presence of substances which are present in the reaction mixtures resulting from the hydroformylation of olefins. These substances are primarily hydrocarbons which are formed as by-products of the oxo process by hydrogenation of the starting olefins and/or by dehydration of the oxo alcohols. The crude reaction mixtures from the oxo process are advantageously used directly for the process of the invention. However, it is also possible to partially distill the reaction mixtures beforehand, i.e. remove part of the constituents having lower boiling points than the oxoalcohols. Furthermore, use can advantageously be made of “topped off” oxo alcohols, i.e. hydroformylation reaction mixtures which have been separated from the catalyst and from high boilers by simple distillation.
The esterification or transesterification catalyst used is particularly advantageously a natural aluminum hydrosilicate which may, if desired, have been converted into its acid form by treatment with a mineral acid, advantageously with concentrated or dilute (e.g. 5-20% strength) hydrochloric acid. It has been found that these catalysts give the best yields and space-time yields. Another important advantage of these catalysts is that they give, even without distillation, virtually colorless esters as are required for use as plasticizers. In contrast, customary esterification or transesterification catalysts such as sulfuric acid, p-toluene sulfonic acid or titanates result in distinctly colored products which are not directly suitable as plasticizers. Furthermore, it is naturally advantageous that the catalysts according to the invention can easily be separated as solids from the reaction mixture. Preferred catalysts are the natural aluminum hydrosilicates of the montmorillonite type which can be made acidic by means of concentrated or dilute hydrochloric acid. A suitable aluminum hydrosilicate is, for example, montmorillonite KS from Sudchemie AG, D-85368 Moosburg.
The hydroxybenzoic acid and the oxo alcohol are generally used in approximately stoichiometric amounts or with an excess of oxo alcohol, for example up to 20 mol %. The catalyst is advantageously used in amounts of from 1-5% by weight, based on the total reaction mixture. The reaction temperature is advantageously from 120-200° C. The reaction can be carried out at atmospheric pressure. Reduced pressure promotes the removal of water from the reaction mixture and shortens the reaction time which is generally from 2-5 hours.
The esterification or transesterification can be conducted batchwise, for example, by heating the mixture of starting materials and catalyst in a stirred reactor, removing the volatile components by distillation and condensing them to form a two-phase mixture, discharging the aqueous or aqueous-alcoholic phase and, if desired, returning the organic phase to the stirred reactor until no more water is carried over. The solid catalyst is separated from the reaction mixture by filtration, suction filtration, or the like, and, if desired, washed with, for example, the organic phase from the water separator, and the filtrate and, if desired, the washing liquid is/are separated into hydrocarbons, unreacted oxo alcohols, possibly also hydroxybenzoic acid and the desired hydroxybenzoic esters of the oxo alcohols by single-stage or multistage distillation, preferably using a stripping gas such as nitrogen. The distillation is advantageously carried out in a thin film evaporator. The hydroxybenzoic esters of the oxo alcohols are obtained as a distillation residue in a purity determined by gas chromatography of >98% and a yield which can be 90% or more, based on the hydroxybenzoic acid. If an oxo alcohol mixture still containing the oxo catalyst has been used as starting material, the ester obtained can be removed by distillation and the catalyst or its valuable constituents can be recovered from the residue, e.g. by acid extraction, as is customary in the oxo process.
Having now generally described the invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purpose of illustration only and are not intended to be limiting unless otherwise specified.


REFERENCES:
patent: 3037052 (1962-05-01), Bortnick et al.
patent: 4927954 (1990-05-01), Knopf

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for preparing hydroxybenzoic esters of oxo alcohols does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for preparing hydroxybenzoic esters of oxo alcohols, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for preparing hydroxybenzoic esters of oxo alcohols will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2525270

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.