Contact-killing non-leaching antimicrobial materials

Drug – bio-affecting and body treating compositions – Solid synthetic organic polymer as designated organic active... – Aftertreated polymer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S078080, C424S078340, C424S078350, C424S404000, C424S405000, C424S406000, C424S407000, C424S409000, C424S411000

Reexamination Certificate

active

06264936

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to non-leaching antimicrobial materials, specifically, the provision of antimicrobial materials capable of killing microorganisms on contact, as well as methods of manufacture and use of such materials.
BACKGROUND OF THE INVENTION
The constant threat of bacterial contamination and the associated repercussions on health have made preservatives a ubiquitous part of drugs and packaged food. However, preservatives oftentimes have undesirable side effects, especially in pharmaceutical products. Growing consumer awareness about the deleterious effect of preservatives in recent years has necessitated their reduction or preferably, total elimination, without risking bacterial contamination, thus prompting the need for the development of new, cost effective packaging and storing methods that prevent bacterial contamination. The problem is acute in the pharmaceutical area, especially in the ophthalmic industry, which is presently driven by the need to address the issue of patient sensitivity toward preservatives in ocular solutions. Burnstein, N. L. et al.,
Trans. Ophthalmol. Soc.,
104: H02 (1985); Collins, H. B. et al.,
Am. J. Optom. & Physiolog. Optics,
51: 215 (A89). Similar problem, exist in the food, medical device, healthcare and water purification areas.
The modality of action of all infection resistant surfaces presently known is via one of the following mechanisms: (i) dissolution of an antimicrobial component into the contacting solution, or (ii) chemically bound antimicrobials. The former is accomplished by blending an antimicrobial compound with a plastic material. The composite material is then either molded into a device or applied as a coating. The bactericidal action of such coatings depend on diffusion of the biotoxic agent into solution. Numerous examples of this type have been reported in the literature. Another variant of this type involves hydrolysis or dissolution of the matrix containing an antimicrobial compound, thereby effecting it's release into solution. High levels of preservatives are, however, released into contacting solutions in long term applications. In the latter mechanism, a bioactive compound is covalently bound either directly to the substrate surface or a polymeric material that forms a nondissolving surface coating. The antimicrobial compounds in such coatings exhibit greatly diminished activity, unless assisted by hydrolytic breakdown of either the bound antimicrobial or the coating itself. In either case, relatively high levels of preservative has to be released into solution in order to elicit antimicrobial action.
Various products for use externally or internally with humans or animals can serve to introduce bacterial, viral, fungal or other undesirable infections. Such products include medical devices, surgical gloves and implements, catheters, implants and other medical implements. To prevent such contamination, such devices can be treated with an antimicrobial agent. Known methods of preparing an infection-resistant medical devices have been proposed in U.S. Pat Nos. 3,566,874; 3,674,901; 3,695,921; 3,705,938; 3,987,797; 4,024,871; 4,318,947; 4,381,380; 4,539,234; 4,612,337; 3,699,956; 4,954,139; 4,592,920; 4,603,152; 4,667,143 and 5,019,096. However, such methods are complicated and unsatisfactory. Prior known antimicrobial coatings often leach material into the surrounding environment. Many are specifically designed for releasing antimicrobial agents (see, U.S. Pat. No. 5,019,096). There is a need for medical devices and other products which are able to resist microbial infection when used in the area of the body to which they are applied, which provide this resistance over the period of time, and which do not leach antimicrobial materials into the environment.
SUMMARY OF THE INVENTION
It is an object of the invention to provide contact killing non-leaching antimicrobial materials which are capable of killing microorganisms on contact, but which do not leach significant amounts of antimicrobial materials into the surrounding environment. The antimicrobial materials may be deposited on the surface of a substrate to form a contact-killing antimicrobial coating on the surface, may be cast into a freestanding antimicrobial film, or may be incorporated into a carrier to provide a bulk antimicrobial which can be applied as desired to form a contact-killing antimicrobial layer.
The antimicrobial materials of the present invention are molecularly designed to enable a matrix bound biocide to retain high activity without elution of any compounds into contacting solutions, carriers or other materials. The antimicrobial's activity stems from the sustained, cooperative biocidal action of its components. Selective transfer of one component from within the matrix directly to the microorganism upon contact is achieved via a “hand off” mechanism upon engagement and penetration of the microorganism's cell membrane. The antimicrobial material, therefore, maintains long term efficacy without releasing toxic elutables into the surrounding environment.
The antimicrobial material of the present invention comprises a combination of an organic material which forms a matrix, and a broad spectrum biocide intercalated in the matrix that interacts sufficiently strongly with the organic material that the biocide does not leach from the matrix. The organic material must possess two important properties: it must be capable of reversibly binding or complexing with the biocide, and must be capable of insinuating the biocide into the cell membrane of the microorganism. The organic material preferably is capable of dissolving into or adhering to the cell membrane surrounding the microorganism Preferred organic materials are those which can be immobilized on a surface and which bind the biocide in such a manner as to permit release of the biocide into the microorganism but not into the surrounding environment. The biocide preferably is a low molecular weight metallic material that is toxic to microorganisms and is capable of complexing with or reversibly binding to the organic matrix material, but which binds preferentially to cellular proteins of microorganisms. When a microorganism contacts the antimicrobial material, the organic material engages or penetrates at least the outer portion of the lipid bilayer of the microorganism's cell membrane sufficiently to permit insinuation of the biocide into the microorganism, where cell proteins or proteins in the lipid bilayer compete effectively for the biocide due to favorable binding constants. The result is a contact-killing delivery system that selectively transfers the biocide through or into the microorganism's cell membrane upon contact without elution of the biocide into solution, thereby maintaining long term efficacy. The unique mode of action of the presently described antimicrobial material offers high surface activity coupled with substantially low leachables.
The invention provides for the first time cooperative bioactivity in a contact killing, nonleaching system.
Organic materials useful in the present invention comprise materials which are capable of 1.) reversibly binding or complexing with a biocide, and 2.) insinuating the biocide into the cell membrane of the microorganism upon contact. A preferred class of materials are those having the aforementioned properties, and which are capable of complexing and/or binding a bactericidal metallic material. Most preferred is the class of organic materials which can dissolve into, or adhere to, and penetrate at least the outer portion of the lipid bilayer membrane of a microorganism. For this purpose, surface active agents, such as cationic compounds, polycationic compounds, anionic compounds, polyanionic compounds, non-ionic compounds, polynonionic compounds or zwitterionic compounds are useful. Organic materials which currently are most preferred for use in the invention include cationic or polycationic materials such as biguanide compounds.
In a preferred embodiment of the present inve

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Contact-killing non-leaching antimicrobial materials does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Contact-killing non-leaching antimicrobial materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Contact-killing non-leaching antimicrobial materials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2524700

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.