High resolution finger input controlling device in an...

Computer graphics processing and selective visual display system – Display peripheral interface input device – Touch panel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S163000

Reexamination Certificate

active

06215478

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an improved finger controlling input device, and more particularly to a novel finger controlling input device comprising a finger controlling input board which can be operated to move a cursor along the absolute coordinate system in an arbitrarily defined range with any resolution.
2. Description of the Prior Art
A conventional computer mouse is disadvantageous that it is difficult to assemble and simplify due to its complicated composition elements. In addition, the sensible minimum distance by hand driving makes its dimension being unable to be minimized effectively so that the production cost can not be reduce correspondingly. Among those hand controlling devices, a finger controlling input device can act as a general mouse, it may has an additional function of hand writing in case it is properly designed. It is the reason why the latter has a prospective future and more particularly, through a long term improvement ,the product has been made so thin that it has become able to replace the trace ball in the present portable computer. A conventional touch input board includes electromagnetic type, contact resistance type, and capacitance type, among which the contact resistance type and capacitance type are mostly use in the portable computer. The capacitance type is mainly formed of multiple lamination provided a conductive grid plate beneath the anti-frictional sheet. By moving a finer on the anti-frictional sheet the magnetic field on the conductive grid plate is varied by the static electric charge on the human body, moreover, the moving direction of the finger is detected and converted to (0,1) binary signals, and corresponding cursor moving direction is also controlled. No matter it is utilized as an additional input device for a computer system or an fundamental equipment for a portable computer, it is impossible to make sophisticated displacement by means of controlling input board only. However, there are several problems remained to be solved with regard to this device as mentioned below:
1 The touch input board may not be made satisfactorily small as its cursor has to be removed by a human finger.
2 Individually different touching pressure and conductivity of the operator results in unstable movement of the cursor.
3 Limited number of sensing elements with respect to entire area of display screen makes each sensing element to be responsible for quite a number of pixels on the display screen results in inaccurate flopping of the cursor. Unless the number of sensing elements is increased to match the desired resolution of the display screen, such a problem can not be solved. But increasing of the sensing elements again entails the enlargement of the area of a touch controlling board which leads to significant increase of the manufacturing cost.
In conclusion, the above described problems limits the future aspect of the conventional devices. This initiated the motive for the inventor of the present invention to develop a finger controlling input device of better properties, more efficient and more saving cost.
SUMMARY OF THE INVENTION
It is a first object of the present invention to provide a novel finger controlling input device which, by accurately removing the cursor along the absolute coordinate in an arbitrarily defined region to obtain any desired degree of display resolution.
It is a second object of the present invention to provide a novel finger controlling input device, which can be easily operated by hand, compact, with better practiculity, easily manufacturable with low cost.
To achieve the above and other objects, a high resolution finger controlling input device in an arbitrarily defined range comprises a finger controlling element having a plurality of thin layered sensing surface, which when closely scribed, can produce 0 and 1 binary signals of displacement; and a formative positioning unit, capable of producing 0 and 1 signals in any defined range divided by the coordinate axes, where in amount of total signals 0, 1 in each axis are divided into a plurality of different speed regions CN, wherein C1 represents a low speed region, CN represent higher speed region, let each speed region correspond to each different displacement multiple rate k1,k2 . . . KN respectively, and then sum up the products of C1, C2 . . . CN to each corresponding displacement multiple rate K1, K2 . . . KN to obtain total corresponding display resolution, i.e., to obtain a value equal to or larger than display resolution. At least two recorders are installed for each axis to record traveling lattice numbers of C1,C2 . . . CN. The sum of the data in two recorders is C. At least 2 is added to the speed corresponding to the speed C2 which is higher than a low speed, while the result of the other recorder is subtracted by 1 keeping total displacement to be 1. By such way of recording movement, the sensing surface of a finger controlling element may be cut to form a input range corresponding to entire display resolution, which enables the finger controlling element can make low speed point-to-point fine displacement within the region, while in high speed movement, it can make axis accelerated displacement and the motion of returning to the original point such that the cursor may be controlled effective with respect to each point on the display.
Furthermore, the finger controlling element may be formed with a touch input board with an input medium thereon such that when the input medium is moving on the touch input board, the cursor may effectively perform displacement and positioning by the absolute coordinate working mode. The touch controlling input board may be resistance type or capacitance type, and the input medium has a stopping end closely provided on the touch controlling input board, and the stopping end may be formed by a stud or a top pin with a flat plate provided at one end for finger touching so that the finger pressure and the static electric charge on the human body may be transmitted to actuate the cursor to move stably among the lattices with the specifically defined region with respect to each corresponding point on the display. Such an effective design feature greatly reduces the production cost and dimension of the finger controlling element, and moreover, makes the control of cursor more reliable and convenient.
One thing worthy of mention is that the formative positioning unit according to the present invention is a absolute coordinate positioning system with unlimited resolution which is the essence of a long term study of the inventor of the present invention. The technical principle can be coordinated with the circular optic grid piece which has been applied to USPTO by the title “CURSOR CONTROLLING DEVICE AND THE METHOD OF THE SAME” by applicants of Fu-Kuo YEH et al of U.S. Ser. No. 08/908098. Since the technology involved in it is so lengthly that is inconvenient to be fully re-explained or described herein. Therefore, in the specification of the present invention only enumerated its detailed flow charts in
FIGS. 16A
to
16
I and attached tables 1 to 3. In this system the different moving velocity Vx is used to control the cursor with finger controlling element to displace in different distances on the display within limited moving region. The above described method is practically performed by dividing the cursor's moving space in several equal portions C=C1+C2+ . . . wherein C1, C2 represent displacement lattices (or distance) which belong to finger controlling element in each different speed zones V1, V2 respectively, and assume each different speed V1, V2 is corresponding to each different displacement ratio constant K1,K2 . . . Accordingly, it is possible to make (K1×C1)+(K2×C2)+ . . . =distance of display. Example: In an arbitrarily defined range of movable distance on a defined hardware=196 lattices×0.08 mm/lattice=15.68 mm
X axis resolution corresponding to display=640
640=(1&

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High resolution finger input controlling device in an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High resolution finger input controlling device in an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High resolution finger input controlling device in an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2524336

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.