Light modulation element, array-type light modulation...

Optical: systems and elements – Optical modulator – Light wave temporal modulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S209100, C359S320000

Reexamination Certificate

active

06288829

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a light modulation element for changing the position of a moving grid by an electrostatic force for executing light modulation, an array-type light modulation element, and a flat-panel display unit.
2. Description of the Related Art
A light modulation element is available for controlling the amplitude (strength), phase, travel direction, etc., of incident light for processing and displaying an image, pattern data, etc. With the light modulation element, the refractive index of a substance allowing light to pass through is changed by the outer field applied to the substance and finally the strength of light passing through or reflecting on the substance is controlled through optical phenomena such as refraction, diffraction, absorption, dispersion, etc. One of the light modulation elements is a liquid crystal light modulation element using the electro-optic effect of liquid crystal. The liquid crystal light modulation element preferably is used with a liquid crystal display of a thin flat-panel display unit.
The liquid crystal display has a structure wherein nematic liquid crystal oriented in parallel with substrates forming a pair of conductive transparent films and twisted 90 degrees between the substrates is placed between the substrates and is sealed, then sandwiched between perpendicular deflecting plates. The liquid crystal display produces display using the fact that the liquid crystal molecules are oriented in the long axis direction perpendicular to the substrate by applying a voltage to the conductive transparent film and the transmission factor of light from a backlight. An active-matrix liquid crystal panel using TFTs (thin-film transistors) is used to provide the liquid crystal display with good responsivity to a moving image.
A plasma display has a structure wherein a large number of electrodes in a perpendicular direction arranged regularly corresponding to discharge electrodes are placed between two glass plates sealed with rare gas of neon, helium, xenon, etc., and the intersecting points of the counter electrodes are used as unit pixels.
The plasma display produces display by selectively applying a voltage to the counter electrode specifying each intersecting point based on image information for causing the intersecting point to discharge and emit light and exciting phosphor for emitting light by generated ultraviolet rays.
FED has a structure wherein a pair of panels is placed facing each other with a minute spacing between and a flat display tube for sealing the surroundings of the panels is provided. The panel on the display surface side is formed on the inner face with a fluorescent film and field emission cathodes are arranged in a one-to-one correspondence with unit light emission areas on the rear panel. A typical field emission cathode has a field emission type microcathode like a drill projection called an emitter tip of minute size.
The FED produces display by using the emitter tip to take out an electron and accelerating and applying the electron to a phosphor for exciting the phosphor.
However, the flat-panel display units in the related arts described above involve the following various problems:
In the liquid crystal display, light from the backlight is allowed to pass through multiple layers of the deflecting plates, the transparent electrodes, and color filter, thus the light use efficiency lowers. The high-grade liquid crystal display requires that TFTs and liquid crystal must be sealed between two substrates and be oriented, thus it is difficult to provide a large area. This is a disadvantage of the liquid crystal display. Further, since light is allowed to pass through the oriented liquid crystal molecules, the viewing angle becomes narrow. This is another disadvantage of the liquid crystal display.
In the plasma display, partition formation for generating plasma for each pixel results in an increase in manufacturing costs and large weight. This is a disadvantage of the plasma display. A large number of electrodes corresponding to discharge electrodes must be arranged regularly for each unit pixel. Thus, as the definition becomes high, the discharge efficiency lowers and the light emission efficiency of the phosphor by vacuum ultraviolet ray excitation is low, thus it is hard to provide a high-definition, high-brightness image in high power efficiency. This is another disadvantage of the plasma display. Further, the drive voltage is high and a drive IC is expensive. This is also a disadvantage of the plasma display.
In the FED, ultrahigh vacuum needs to be produced in the panel to make discharge highly efficient and stable, and the manufacturing costs increase as with the plasma display. This is a disadvantage of the FED. Since field emission electron is accelerated and applied to the phosphor, high voltage becomes necessary. This is also a disadvantage of the FED.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide a light modulation element, an array-type light modulation element, and a flat-panel display unit adopting low drive voltage, being able to produce a large area at low costs, having a simple configuration easily manufactured, and providing high image quality and high-speed responsivity.
It is further object of the invention to provide a light modulation element providing good light use efficiency, eliminating the need for producing high vacuum, being able to produce a large area at low costs, providing high image quality, and adopting low drive voltage, an array-type light modulation element, and a flat-panel display unit using it.
To the end, according to one of embodiments of the invention, there is provided a light modulation element comprising a transparent substrate transparent for modulated light, a moving grid comprising a plurality of slits formed by arranging a plurality of grid plates each having a shield property and spaced from each other, the moving grid having at least a part having electrical conductivity, elastic support members for placing the moving grid with a predetermined spacing on the transparent substrate and supporting the moving grid movably in an arrangement direction of the grid plates, shield films formed at the positions of the transparent substrate overlapping the slit positions of the moving grid, and moving grid move means for moving the moving grid in the arrangement direction of the grid plates by an electrostatic force generated by applying predetermined drive voltages to fixed electrodes placed on the transparent substrate and the moving grid, characterized in that as the moving grid is moved, a transmission factor of light passing through the slits is changed for executing light modulation.
In the light modulation element, the moving grid comprising a plurality of belt-like grid plates placed side by side which is supported on the elastic support members on the transparent substrate and the moving grid is moved in the arrangement direction of the grid plates by the electrostatic force, whereby the relative positional relationship between the slits of the moving grid and the shield films on the transparent substrate changes and the transmission factor of light passing through the slits can be changed for executing light modulation.
That is, when the moving grid is moved to the position where the slits and the shield films on the transparent substrate overlap each other with respect to the incidence direction of the light, the incident light is emitted from roughly all area of the slits. On the other hand, when the moving grid is moved to the position where the slits and the shield films do not overlap, light is shielded by means of the moving grid (grid plates) and the shield films on the transparent substrate, and the incident light does not pass through the light modulation element.
Further, according to another embodiment of the invention, there is provided a light modulation element comprising a transparent substrate transparent for modulated light, a fixed wall being placed upright

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Light modulation element, array-type light modulation... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Light modulation element, array-type light modulation..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Light modulation element, array-type light modulation... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2520827

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.