Virtual intelligence shoe with a podiatric analysis system

Boots – shoes – and leggings – Boots and shoes – Shoe attachment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C036S001000, C036S137000, C073S172000, C073S179000, C600S592000, C340S573100

Reexamination Certificate

active

06195921

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates generally to virtual intelligence shoe with a podiatric analysis system, which monitors the predetermined plurality of pressure regions underneath the foot or feet continuously and instantaneously at stance phases in various activities, and shoe temperature for diagnostic means that can virtually be applied to the alteration of orthoses, shoes and other modes at explicit foot or feet conditions.
2. Description of Prior Art
The shoe industry has existed for many years and rapidly evolved to multiple styles and functions of shoes to meet the population demand. Each pair of shoes has its own characteristic and purpose, which raises the question whether the same pair of shoes has a capability to deliver similar expectation in the next person. It is unlikely to anticipate that purpose because of the uniqueness of individual foot or feet mechanics when one engages full weight bearing in various activities. Feet are very complicated and very delicate organs, yet they do tremendous work. They make it possible for the human species to overcome the enormous forces of gravity, stand, walk, or run in an upright position with great efficiency. Each individual foot has a unique trait to coordinate the different mechanisms to properly achieve a functional alignment that allows the feet to reach optimal stability on the ground surface for human locomotion. It is not necessary to state that human species acquire shoes in order to walk or engage in other activities. The meaning of having a good pair of shoes is to increase the level of activities in individual expectation. Shoes can enhance the quality of life and most often can save lives of those suffering from diabetic diseases or peripheral neuropathy diseases and other foot maladies.
There are a number of devices, or shoes, which can monitor the forces and pressures underneath the foot or feet, but do not extend to the outdoor terrain. Each device has it own set of characteristics for collecting forces and pressures underneath the foot or feet because the complexity of foot biomechanics. For example, when the foot is getting ready to land on the ground surface, chances are those the greater degree of the internal rotation of lower limb in the flatfoot (pes planus) type and less in the high arch (cavus) type. This occurs differently in pathologic foot conditions. The internal rotation crosses the ankle joint, producing eversion of the subtalar joint, which in turn unlocks the transverse tarsal joint to produce a flexible forefoot and a flattening of the longitudinal arch. Concomitantly, the ankle is rapidly undergoing plantar flexion; the foot is flat on the ground. The initial impact of the foot against the ground is dependent on the limb velocity, acceleration and body weight. After the initial event, the foot is placed firmly on the ground with the heel relatively everted, a flexible transverse tarsal joint, and some flattening of the longitudinal arch. Once foot-flat has been achieved, there is increased vertical loading of the foot up to 120% to 300% of the body weight depending on the activity, and progressive dorsiflexion occurs at the ankle joint. At an appropriate gait cycle, the opposite limb passes the stance limb and the heel begins to rise off the ground. At this point, the vertical force decreases to 70%-90% of body weight depending upon the outcome of the particular activity.
The solution of collecting the forces and pressures underneath the foot or feet is very intricate and with multiple variables, thus, a set of data may vary depending on where the device or sensor placement, materials and other means due to the physics nature of compressive forces or pressures. As is known, there are numbers of load sensing devices useful for measuring and analyzing forces exerted on the feet. For example, U.S. Pat. No. 4,814,661, issued to Ratzlaff, et al., discloses systems for measurement and analysis of forces exerted during human locomotion. Systems including piezoelectric sensor elements advantageously mounted between supporting hard plastic material of various types or other mechanical similar materials. The sensor can further be supported by backup plate structures. Detachable mounting formed by mechanically interengaging parts allow transducer inserts to be made in a modular manner for use in different sensor shoes, thus allowing many more patients to be analyzed. Sensor shoe has a toe and heel. Shoe further has a medial and a lateral. Sensors are connected with small tubular wires to the desktop computer.
U.S. Pat. No. 5,269,081, issued to Gray, discloses a force-monitoring shoe for monitoring the force being applied to a patient's leg, as during walking. The device is contained within a shoe-like enclosure, which can be worn by a recuperating injured person. When force equal to a selectable value has been applied, an alert system notifies the patient. Another U.S. Pat. No. 5,357,696, issued to Gray et al., discloses a device for monitoring force being applied by a wearer thereof to the wearer's foot, as during walking. The device includes a pressure sensitive element that produces an electrical signal that is related to the force, with this signal being used to alert the wearer when a force more than a preselected value occur. Further, this signal can be used as input to data recording and analysis equipment. The signal transmission can be by direct wire connections, or via radio transmission.
U.S. Pat. No. 5,566,479, issued to Gray et al., discloses a shoe to be worn by diabetic persons, or persons afflicted with various types of foot maladies, where excess pressure exerted upon a portion of the foot tends to give rise to ulceration. The shoe body is fabricated to have relieved are as in the inner surface that contacts the foot at locations where the excess pressure is thought to possibly occur. When undesirable pressure occurs, there is an alarm unit to warn the wearer of the existence of this threshold. This warning alerts the wearer to remove the shoe to prevent the damage to the foot.
U.S. Pat. No. 5,642,096, issued to Leyerer et al., discloses a device for prevention of ulcers in the feet of diabetes patients. The device includes a sensor disposed in a contained liquid mass of a hydrocell carried in the shoe inner sole, the sensor being one that detects both pressure and temperature values to which the patient's feet are exposed. The outputs value of pressure and temperature are acquired by a warning signal generator to operate same to generate a patient discernible warning signal that indicates to the patient a need to take action to avoid continuance of exposure to the condition.
Further, there are devices that provide some form of measuring exerted force by the foot via a sensor mat between the insole and the foot. These devices include those described in U.S. Pat. No. 5,033,291 issued to Podoloff et al on Jul. 23, 1991, U.S. Pat. No. 5,323,650 issued to Fullen et al on Jun. 28, 1994, U.S. Pat. Nos. 5,408,873 and 5,678,448 issued to the present inventors on Apr. 25, 1995 and Oct. 21, 1997, respectively. These patents and certain others cited therein, deal with monitoring the force being applied to the foot to ascertain the general forces underneath the foot. Such force measurement devices are typically, externally exposed, heavy and cumbersome and, thus, act to restrict the wearer's ordinary movement and are intolerant to outfield environment. These sensor mats, which employ directly the sole of foot, tend to wrinkle, deform, unfit and slip away as a wearer attempts to step on it. As a result, they could produce erroneous information. Since the electronic package is exposed and dangling on the side of shoe with connector attached to sensor mat, it constrains the ordinary mobility of the user and is likely to lead to sudden failure. Another device for sensing ambulation force is U.S. Pat. No. 3,791,375 issued to Pfeifer on Feb. 12, 1974, where it is accomplished by a fluid-containing load that deflects and changes its volume in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Virtual intelligence shoe with a podiatric analysis system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Virtual intelligence shoe with a podiatric analysis system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Virtual intelligence shoe with a podiatric analysis system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2520340

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.