Sheet diverter with non-uniform drive for signature...

Sheet feeding or delivering – Feeding – By means to convey sheet

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C271S272000, C271S302000

Reexamination Certificate

active

06244593

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates, generally, to sheet diverters for directing sheets moving in serial fashion along a path to one of a plurality of collation paths and, more particularly, to a high speed sheet diverter of the foregoing kind for collation of printed signatures to be used in the binding of a publication such as a magazine or a newspaper. The present invention further relates to methods for collating sheets, such as signatures, from a high speed printing press. Specifically, the present invention provides a sheet diverter with a non-uniform drive mechanism, the function of which is to improve the collation process such that the quality of signatures is improved as the signatures move along one of a plurality of collation paths and to allow a faster machine speed.
BACKGROUND OF THE INVENTION
Sheet diverters may range from the collating apparatus associated with an office copier, to sheet or web handling devices employed in the manufacture of paperboard articles, to sheet diverters specifically adapted to collate signatures to be used in binding or otherwise assembling books, magazines or newspapers. Each of these environments presents a somewhat different challenge in designing an efficient diverter or collator, but the same objective tends to dominate the entire class of apparatus, namely, accurately routing selected flexible webs or ribbon sections along a desired collating path to achieve a desired order.
In the printing industry, a desired image is repeatedly printed on a continuous web or substrate such as paper. The ink is dried by running the web through curing ovens. In a typical printing process, the web is subsequently slit (in the longitudinal direction which is the direction of web movement) to produce a plurality of continuous ribbons. The ribbons are aligned one on top of the other, folded longitudinally, and then cut laterally to produce a plurality of multi-paged, approximately page-length web segments, termed signatures. A signature can also be one printed sheet of paper that has or has not been folded. It is often desirable to transport successive signatures in different directions. In general, a sheet diverter operates to route a signature along a desired one of a plurality of paths.
A sheet diverter in a folder at the end of a printing press line must be operable at the high speeds of the press line, typically in excess of 2,000-2,500 feet per minute (fpm). It is desirable to run both the press and folder at the highest speed possible in order to produce as many printed products as possible in a given amount of time. However, the physical qualities of paper or similar flexible substrates moving at a too high rate of speed often results in whipping, dogearring, tearing, or bunching of the substrate. For example, the sudden impact force between the leading edge of a signature and a diverter wedge may result in the leading edge of the signature being damaged. Similarly, the trailing edge of a signature may slap against the top vertex edge of a diverter wedge, resulting in damage to the trailing edge. The trailing edge of the signature may tear, or be unintentionally folded on the corners. Damaged signatures may be of unacceptable quality and may also lead to jams in the folder, resulting in downtime and repair expense.
Many of the foregoing defects become more prevalent above certain speeds of the printing press and folder. For example, such defects may occur when the press is run at a high rate of speed, say greater than 2,500 fpm, but may not occur when the press is run at a slower speed, for example, 2,200 fpm. As machine speeds increase, it becomes increasingly more and more important to provide a system which allows for individual signatures to be directed down any one of a plurality of selected collation paths without damaging the leading or trailing edge of each signature.
A sheet diverter for signature collation and a method thereof is described in U.S. Pat. No. 4,729,282, which is hereby incorporated by reference. U.S. Pat. No. 4,729,282 discloses a sheet diverter including an oscillating diverter guide member that directs successive signatures to opposite sides of a diverter wedge.
At excessively high speeds, the tail end of a signature may be damaged due to whipping of its tail end at the apex of a diverter wedge. At excessive speeds, the diverter may direct the tail end part of a signature to the wrong side of a diverter wedge before the trailing edge of the signature has passed the apex of the diverter wedge. As the trailing edge of the signature reaches the apex, the end of the signature will be “whipped,” i.e., tailwhipped, back to the correct side of the diverter wedge to which the preceding portion of the signature traveled along, thereby possibly damaging the tail end of the signature.
Thus, there is a need for a sheet diverter that is capable of operating at high speeds and yet being capable of providing a signature that is acceptable in quality. What is further needed is a sheet diverter for use in the printing industry such that the sheet diverter improves the collation process of printed signatures to prevent or minimize damage to the signatures as the signatures move along one of a plurality of collation paths. Particularly, what is also needed is a sheet diverter that prevents or reduces tailwhip of the end of a signature as the signature travels past the apex of a diverter wedge thereby allowing for greater operational speeds and increasing the quality of each signature.
SUMMARY OF THE INVENTION
The present invention provides a sheet diverter that prevents or minimizes the potential for damage to the trailing ends of sheets such as signatures. According to one aspect of the present invention, the invention utilizes a new non-uniform drive for a sheet diverter.
In one embodiment of the present invention, elliptical gears are employed. In accordance with the present invention, a first shaft and a second shaft are synchronized at 0 degrees and 180 degrees of rotation. However, as the shafts rotate, at times, the second shaft lags behind the first shaft by virtue of the manner in which elliptical gears operate. The retardation of the second shaft delays the translation of a diverter nip or gap, defined as being between diverter rolls and through which a signature travels, to the opposite side of a diverter wedge so that the diverter rolls are in a more favorable position to prevent whipping of the trailing end of a signature in a collation process as the signature travels past the apex of a diverter wedge.
After the trailing edge of a signature has advanced past the apex of a diverter wedge, the diverter rolls translate the diverter nip to the other side of the diverter wedge in order to feed the next signature. The diverter nip moves from one side of the apex of the diverter wedge to the other side as the first and second shafts rotate and the second shaft advances and “catches-up” with the first shaft so that the first and second shafts are again synchronized at 0 degrees and 180 degrees respectively. The speed of the second shaft is optimized for the high speed movement of signatures. The phase adjustment of the second shaft may be set during machine assembly through an adjustable bushing or bushings or may be adjustable during machine operation by using a motorized phase adjuster differential.
In a second embodiment of the present invention, a conjugate cam system is employed. A conjugate cam assembly converts the constant angular velocity of a first shaft into a non-constant angular velocity of a second shaft. In this way, the translation of the diverter rolls and diverter nip is controlled in a similar manner as that described with reference to the elliptical gears.
It is a feature of the invention to provide an apparatus that minimizes the potential for damage to signatures as they travel down one of a plurality of collation paths.
Another feature of the invention is the prevention or minimization of damage to the trailing end of a signature diverted through a folder, while allowing a printing press

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sheet diverter with non-uniform drive for signature... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sheet diverter with non-uniform drive for signature..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sheet diverter with non-uniform drive for signature... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2519553

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.