Devices for passive motion of joints under traction

Surgery – Instruments – Orthopedic instrumentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S105000

Reexamination Certificate

active

06224594

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to orthopedic surgical devices and, in particular, it concerns devices for moving joints while maintaining traction across the joint.
It is known to employ traction across a joint in the treatment of intra-articular fractures. Especially where the bones are fragmented to an extent which precludes direct surgical procedures to stabilize the fragments, traction is known to induce ligamentotaxis in which the fragments re-align due to forces on their ligamentous and volar plate attachments.
Traction across a fractured joint can be applied by pushing apart pins implanted in each of the adjacent bones. An example of a simple system for applying traction in this manner is the “S Quattro Flexible Mini External Fixator” commercially available from Surgicraft Ltd., England.
It has been found, however, that prolonged application of traction across a fractured joint without movement of the joint frequently results in loss of joint mobility due to irregular re-molding of the joint surfaces and soft tissue scarring (fibrosis). A number of attempts have therefore been made to develop traction systems which permit freedom of movement of the joint, referred to as “dynamic traction” systems.
One approach to dynamic traction is set out in an article entitled “The Dynamic Traction Method: Combining Movement and Traction for Intra-Articular Fractures of the Phalanges” by Robert R. Schenck, MD (
Hand Clinics
10 (2) May 1994). This describes a system in which rubber bands are mounted between a transosseous wire located in the distal head of the middle phalanx and an external frame. In the primary example, the frame is formed as a large loop in the plane of movement of the joint. The point of connection of the rubber bands can then be slid manually around the loop to flex the joint while maintaining the applied traction. Also discussed are adaptations of existing continuous passive motion devices to apply tension, also by use of rubber bands.
A particular shortcoming of the dynamic traction systems discussed by Schenck is the imprecision and inconvenience of adjustment of the tension applied. Adjustment is achieved primarily by adding or removing rubber bands, thereby giving large discrete jumps in the amount of tension. Although a possibility of twisting the rubber bands is mentioned, no mechanism is provided for such an adjustment. The systems also require professional supervision and demand a high degree of patient compliance and cooperation, making them unsuitable for home-treatment.
A second approach to dynamic traction systems is represented by a proximal interphalangeal joint hinge commercially available under the tradename Compass from Smith & Nephew Richards Inc., USA. This hinge is secured by five pins drilled into the bones. Once positioned, an adjustment screw allows distraction of the joint. Once the desired degree of distraction is achieved, the pin blocks are fixed in position relative to the hinge. It is not possible to achieve a precise and measurable amount of traction. During normal operation of the hinge, no flexibility or elasticity is exhibited.
Although the Compass system provides effectively continuously variable adjustment of the degree of distraction of the joint, the lack of flexibility in the system causes other shortcomings. Firstly, the hinge is extremely sensitive to misalignment. For this reason, a superfluous axial pin is drilled into the bone for alignment of the hinge. However, even with the extra pin, sufficiently precise positioning of the hinge is difficult to achieve. Additionally, even within the operative range of accuracy, a slight misalignment of the hinge may result in a large variation in the distraction of the joint during movement. In such circumstances, the lack of flexibility may cause extreme variations in the force applied to the joint, either in over-traction or compression, potentially resulting in severe damage to the joint. Finally, passive movement of the joint is achieved by labor intensive manual operation of a worm-gear mechanism which demands a high degree of patient compliance.
There is therefore a need for a dynamic traction device for treatment of intra-articular fractures which applies traction elastically across the joint in a manner so as to render slight misalignments non-critical. It would also be advantageous to provide devices for aiding the accurate alignment of such a device.
SUMMARY OF THE INVENTION
The present invention is a dynamic traction device for treatment of conditions such as intra-articular fractures which provides substantially continuous adjustability of traction applied elastically across the joint. Preferred embodiments of the invention allow fully programmable control of a wide range of parameters relating both to the amount of traction applied and the range, speed and frequency of passive movement of the joint, thereby largely avoiding reliance on patient compliance.
According to the teachings of the present invention there is provided, a device for generating passive motion of a joint while applying traction, the joint having been prepared by insertion of at least one pin into each of a proximal and a distal bone adjacent to the joint, the device comprising: (a) a proximal bracket for engaging the at least one pin of the proximal bone; (b) a distal bracket for engaging the at least one pin of the distal bone; and (c) a tension-hinge mechanism connecting between the proximal bracket and the distal bracket, the tension-hinge mechanism including: (i) a hinge for permitting rotational movement of the distal bracket relative to the proximal bracket about a hinge axis, at least one of the proximal bracket and the distal bracket being implemented as a movable bracket slidingly mounted so as to be displaceable in a direction substantially perpendicular to the hinge axis, and (ii) a traction mechanism for applying substantially constant force over a predefined range of positions of the movable bracket so as to apply tension across the joint.
According to a further feature of the present invention, the traction mechanism includes at least one roll-spring.
According to a further feature of the present invention, the traction mechanism includes at least one mechanically-compensated spring.
According to a further feature of the present invention, each of the proximal and the distal brackets is configured for engaging two pins inserted in each of the proximal and distal bones, respectively.
According to a further feature of the present invention, at least one of the proximal and the distal brackets features a high tolerance pin clamp configured to provide at least one angular degree of freedom through a range of at least a few degrees in alignment of the at least one bracket relative to one of the pins.
According to a further feature of the present invention, there is also provided an actuator mechanism mechanically linked between the proximal bracket and the distal bracket for generating relative rotation between the proximal bracket and the distal bracket about the hinge.
According to a further feature of the present invention, the actuator mechanism includes a gear member associated with one of the proximal bracket and the distal bracket and a worm gear mounted rotatably about an axis of rotation associated with the other of the proximal bracket and the distal bracket, the worm gear being engaged with the gear member.
There is also provided according to the teachings of the present invention, a jig for use during insertion of at least one pin into each of a proximal and a distal bone adjacent to a joint prior to attachment of a motion-enabling orthopedic device, the jig comprising a drilling guide bracket including: (a) a proximal jig bracket portion providing at least one drilling guide tube; (b) a distal jig bracket portion providing at least one drilling guide tube; and (c) at least one alignment feature deployed between the proximal and the distal bracket portions and configured to facilitate alignment of at least one part of the drilling guide brack

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Devices for passive motion of joints under traction does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Devices for passive motion of joints under traction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Devices for passive motion of joints under traction will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2518105

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.