Grommet having a resilient flange

Miscellaneous hardware (e.g. – bushing – carpet fastener – caster – Bushing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C016S002200, C016S002300, C174S1520GM, C174S15300A

Reexamination Certificate

active

06240597

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a grommet, and more particularly to a grommet which enables a long member (e.g. a wire harness) to be positively and easily passed through and retained to a mounting plate such as a panel of a vehicle body.
2. Related Art
There have heretofore been proposed various grommets which enable a wire harness to be passed through and mounted on a panel of a car body of an automobile, and the Applicant of the present application has proposed a grommet (Japanese Patent Unexamined Publication No. 8-212857) which includes a smaller-diameter tubular portion for fitting on a wire harness, a larger-diameter tubular portion for fitting in a mounting hole, a tapering tubular portion interconnecting the smaller-diameter and larger-diameter tubular portions, and a groove edge portion and a holding piece portion which are provided at an outer peripheral surface of the larger-diameter tubular portion.
In this example, the larger-diameter tubular portion is turned inside out, with its inner peripheral surface directed outwardly, and by doing so, a peripheral edge portion of the holding piece portion is deformed into a tapering, cylindrical shape, and is passed through the mounting hole. Subsequently, the smaller-diameter portion is drawn into the mounting hole, and as a result, because of a resilient force tending to restore the holding piece into its initial shape, the larger-diameter portion is restored into its initial shape in such a manner that the groove edge portion is engaged in a peripheral edge of the mounting hole. Therefore, the wire harness can be easily and positively mounted with a relatively smaller force than other conventional grommets.
In the above conventional example, if the smaller-diameter portion is passed through the mounting hole with its axis disposed out of alignment with the axis of the mounting hole, when mounting the wire harness, there is a possibility that the groove is ill-fitted to the mounting hole so as to be in eccentric relation to the peripheral edge of this mounting hole.
Therefore, it has been desired to provide the type of grommet which enables the groove to be positively and easily fitted to the mounting hole in a proper condition.
SUMMARY OF THE INVENTION
This invention has been made in view of the above problems, and an object of the invention is to provide a grommet for positively mounting a longitudinally shaped member (e.g. a wire harness) in such a manner that the long member is passed through a mounting plate such as a panel of a vehicle body.
According to the invention, the above object has been achieved by a grommet for passing and holding a member relative to a mounting hole formed through a mounting plate, which comprises a first cylindrical portion for passing the member therethrough, a second cylindrical portion connected to the first cylindrical portion through an annular connection portion formed on an outer peripheral surface of the first cylindrical portion, a groove portion formed in an outer peripheral surface of the second cylindrical portion, and a flange portion formed on that portion of the outer peripheral surface of the second cylindrical portion lying between the groove portion and the connection portion. The second cylindrical portion is turned inside out, with its inner peripheral surface directed outwardly, so that a peripheral edge portion of the flange portion is inserted into the mounting hole, and then the second cylindrical portion is restored into its initial shape, so that the first cylindrical portion is passed through the mounting hole, and the groove portion is fitted on an inner peripheral edge of the mounting hole. A plurality of guide portions extend radially from the outer peripheral surface of the first cylindrical portion and the guide portions can be brought into contact with the inner peripheral edge of the mounting hole in such a manner that the second cylindrical portion is disposed coaxially with the mounting hole.
The first cylindrical portion need only to have an inner diameter corresponding to an outer diameter of the member such as a wire harness, and this inner diameter may be a little smaller so that the member can be press-fitted into the first cylindrical portion. This first cylindrical portion does not need to have a uniform inner diameter or a uniform outer diameter over the entire length thereof, and for example may a stepped, cylindrical shape or a tapering, cylindrical shape.
The connection portion need only to radially extend from the predetermined portion of the outer peripheral surface of the first cylindrical portion over the entire circumference thereof, and for example, this connection portion is formed into a flat ring-shape or a generally conical shape.
The second cylindrical portion need only to have an outer diameter corresponding to the inner diameter of the mounting hole, and the proximal end of this second cylindrical portion is connected to the peripheral edge of the connection portion.
Therefore, for example, the first cylindrical portion and the second cylindrical portion may be arranged in a telescopic manner, or may be serially arranged in the axial direction through the connection portion.
The first cylindrical portion, the connection portion and the second cylindrical portion may be formed integrally with one another, using a synthetic resin having a suitable degree of elasticity and water resistance. However, these portions may be separate from each other in so far as the second cylindrical portion can have a suitable degree of elasticity and water resistance.
The flange portion may comprise an annular flange, formed on the outer peripheral surface of the second cylindrical portion over the entire circumference thereof, or may comprise a plurality of flange portions spaced a predetermined distance from one another in the circumferential direction.
Each of the guide portions may comprise a plate disposed parallel to the axis of the first cylindrical portion, or may comprise a plate or a bar extending radially of the first cylindrical portion. These guide portions have the same length in the radial direction, and are arranged at equal intervals or unequal intervals in the circumferential direction.
In the grommet of this construction, when the plurality of guide portions, extending radially from the outer peripheral surface of the first cylindrical portion, are brought into contact with the inner peripheral edge of the mounting hole, the second cylindrical portion is disposed coaxially with the mounting hole, and therefore the groove portion is fitted properly to the mounting hole, and more specifically, the inner peripheral edge of the mounting hole, and therefore the above object is achieved.
In the present invention, if each of the guide portions has a plate-like shape, and is disposed parallel to the axis of the first cylindrical portion, the required strength can be obtained as compared with the case where each guide portion comprises a plate or a bar extending radially of the first cylindrical portion, and therefore the guide portions can positively guide the first cylindrical portion without being easily deformed.
In the present invention, if the guide portions are interconnected through a disk portion, corresponding to the mounting hole, or if the guide portions are interconnected through an annular portion, having a diameter corresponding to the diameter of the mounting hole, the strength of the guide portions can be further increased.
In the present invention, if the guide portions are tapering toward the open end of the first cylindrical portion, the guide portions can be easily inserted into the mounting hole.
In the present invention, an engagement portion may be formed on the outer peripheral surface of the second cylindrical portion, and tapered from the groove portion to the distal end of the second cylindrical portion.
In this grommet, the engagement portion, tapering from the groove portion toward the distal end, is formed beforehand, and therefore when the second cylindrical p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Grommet having a resilient flange does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Grommet having a resilient flange, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Grommet having a resilient flange will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2517857

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.