Method for making tamper-preventing, contact-type, smart cards

Registers – Records – Laminated

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S492000, C361S737000

Reexamination Certificate

active

06241153

ABSTRACT:

BACKGROUND OF THE INVENTION
Smart cards are used as bankcards, ID cards, telephone cards and the like. They are based upon the use of an electromagnetic coupling (either by direct physical contact or by electromagnetic waves) between a smart card's electronic components and a card reader, pickup head or other appropriate electronic signal receiving device such as those employed in an ATM. Because these cards are so widely used to effect very valuable and/or otherwise important transactions, they are the frequent subject of fraudulent activities. These fraudulent activities often involve physically tampering with a smart card's electronic components. For example, their computer chips or other electronic components are removed from a valid smart card and physically transferred to a fraudulent card in order to gain money, unauthorized access, unauthorized information, etc.
Smart cards are usually made by assembling several layers of plastic sheets in a sandwich array. In the case of so-called “contact” type smart cards at least one face of the smart card has an opening in which an electronic signal sensing component such as a strip-like sensor, computer chip, module or “pickup head” reside(s). The electronic signal sensing component comes into direct physical contact with an electrically cooperating component of a machine (e.g., an ATM machine, credit card transaction machine, a personal identity verification machine, telephone, etc.) in which the contact type smart card is employed. Many contact type smart cards have all of their electrical components (e.g., their electronic signal sensing device and their computer chip assembled) in a unified module that is glued in an open cavity in a face of the card. By way of distinction, so-called “contactless” smart cards communicate with the machines in which they are employed by means of a radio wave-receiving antenna that is embedded in the interior of the contactless smart card. Hence, there is no physical contact between the card's electronic signal sensing component(s) and the user machine's signal sensing component. Some smart cards operate in hybrid, contact/contactless, modes of operation.
Applicant's invention may be used with any of these three types of smart card; but for reasons hereinafter more fully explained, it is more particularly concerned with “contact” type smart cards and/or the methods employed to manufacture them. The methods by which prior art smart cards have been manufactured have varied considerably. For example, U.S. Pat. No. 5,272,374 discloses an integrated chip-employing smart card comprising a card board having a first and a second major surface and a semiconductor module having an electrode terminal face. The semiconductor module is mounted in the card board such that the electrode terminal face is left exposed in the first major surface of the card board.
U.S. Pat. No. 5,311,396 teaches a portable and connectable chip-based smart card system having one or more chips integrated into a package. The electronic component is mounted on the upper surface of metal contacts. A lower surface has metal contacts that constitute a connector of the system. Each of the metal contacts of the upper face is connected to, and faces, a metal contact of the lower surface, and vice versa. In a second embodiment of this invention, the electronic component is surface mounted on an upper surface of the metal contacts in a manner such that the lower surface of these contacts forms the connector.
U.S. Pat. No. 5,486,687 teaches a memory card having several integrated circuits for personal computers. These memory cards serve as a large capacity mass memory for replacing floppy disks and other exchangeable magnetic supports. They are provided with a plug-in connector at the end of the card and can be inserted in the reader in a prescribed manner, e.g., in accordance with PCMCIA standards. According to one aspect of this invention, a flush contact chip card memory is formed by such a plug-in card. To this end, the card has a supplementary connector with flush contacts on its principal face. The resulting reader is transportable. Its application software can be stored in the card and can be installed in any random microcomputer equipped with a PCMCIA reader.
All of these prior art methods for making contact smart cards are to some degree concerned with properly positioning and fixing the electronic signal sensing component module or assembly inside the smart card in such a way that they present a flat surface on or substantially flush with the card's face surface (or its obverse surface). Unfortunately, this proximity of the signal sensing component to the face surface (or its obverse) of contact smart cards presents an opportunity for tampering with, and fraudulent use of, such cards.
SUMMARY OF THE INVENTION
Applicant's smart cards (e.g., credit cards, ATM cards, personal identity cards, access control cards, telephone cards, etc.) and methods for making them are primarily based upon the use of certain hereinafter more fully described physical elements and manufacturing procedures. Applicant's tamper-preventing construction for contact type smart cards is achieved by coating the rear side of the smart card's contact device (e.g., its signal sensor, pickup head, computer chip) with a primer/adhesive that has the ability to form a strong bond with a thermosetting polymeric material that is injected into a void space that eventually becomes the core or center layer of the smart card. This construction method is based upon applicant's finding that the bonding action between a primer/adhesive and the thermosetting polymeric material that forms the core of the card is much stronger than the bonding action between the rear surface of an electrical signal sensing component and a thermosetting polymeric material.
The tamper-preventing action provided by applicant's placement of a primer/adhesive on the rear side (i.e., the thermosetting polymer contacting-side) of the card's contact device can be replaced by or further enhanced by placement of certain, hereinafter more fully described, “anchor hooks” on the electrical sensing component in a manner such that said hooks are immersed in the incoming, liquid, thermosetting polymer. Thereafter, these “anchor hooks” become very strongly embedded in the thermosetting polymeric material when it cures. Indeed, the use of such anchor hooks can, in its own right, achieve the tamper preventing action provided by applicant's primer/adhesive-thermosetting material bond. In some of the more preferred embodiments of this invention the primer/adhesive and the anchor hooks will be used together to achieve the tamper-preventing action.
The primer/adhesives used in the hereindescribed processes are so-called solvent based, primer/adhesives. They usually employ methyl ethyl ketone as a solvent for an adhesive, polymeric material. 3M Adhesive Systems Industrial Tape and Specialties Division, 3M Center, Building 220-7E-01, St. Paul, Minn. makes several such primer/adhesives. Their 4475® Primer/adhesive is, however, particularly preferred for the practice of this invention. In actual manufacturing practice, these solvent based, primer/adhesives may be at least partially cured by exposure to an “artificial” energy source (i.e., an energy source other than ambient heat and/or light of the manufacturing plant). This exposure speeds up the curing process. These artificial energy sources may be further characterized by their ability to produce electromagnetic waves of a given wave length. Some primer/adhesives, for example, can be more quickly cured by exposure to energy sources giving off electromagnetic waves having wave lengths ranging from about 200 to about 400 nanometers (nm). Such primer/adhesives are sometimes referred to as being “UV curable”. Electrically powered UV and/or microwave producing devices known to those skilled in this art may be employed as sources of such 200-400 nm wave forms. Use of devices that emit 260-270 nm wave forms is eve

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for making tamper-preventing, contact-type, smart cards does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for making tamper-preventing, contact-type, smart cards, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for making tamper-preventing, contact-type, smart cards will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2515231

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.