Three-point converter and method for its operation

Electric power conversion systems – Current conversion – Using semiconductor-type converter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06219265

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a three-point converter and to a method of operating the three-point converter.
The invention is associated with the field of three-point converters that are fed by voltage intermediate circuits. Converters of this type are used both in electrical drives and in filter and compensation installations involving high power levels. The protective circuit proposed is, in particular, a possibility for the realization of high-power converters in the medium-voltage range.
A topology of a neutral point clamped (NPC) three-point converter has already been generally known for a long time. It is also used industrially in the field of high power levels. IGBTs, GTO thyristors or integrated gate commutated thyristors (IGCT) are used as main switches in this case.
When GTO thyristors are used, it is necessary to limit the rate of current rise di/dt during turn-on and also the rate of voltage rise du/dt during turn-off across the switches.
When IGCTs are used, it is necessary to limit only the rate of current rise di/dt. For this purpose, switching load-relief networks, so-called snubbers, are disposed in the circuit; they ensure the abovementioned limitation and thereby generally reduce switching losses in the switches.
A number of examples of such configurations are described in Suh, J.-H. et al.: “A New Snubber Circuit for High Efficiency and Overvoltage Limitation in Three Level GTO Inverters”, IEEE Trans., On Industrial Electronics, Vol. 44, No. 2, April 1997. The limiting of the rates of voltage and current rise is achieved, in principle, by capacitors connected in parallel with the switches and, respectively, inductors connected in series as well as additional active and/or passive components which are always necessary. When GTO thyristors are used, the protective circuits must generally be implemented separately for each GTO or for each phase. The outlay on active and passive components is therefore high. Both in the case of conventional RCD snubbers and in the case of the improved variant proposed, the entire energy stored in the snubber is converted into heat via resistors. Problems which arise when conventional RCD snubbers are used, such as overvoltages across the GTO thyristors (caused by the series inductors) and unequal blocking voltage distribution between the GTOs, can only be minimized, but not solved, even with the improved snubber mentioned above.
An example of an industrially manufactured snubber is described in Komulainen, R.: “Inverter Protected in Respect of the Rates of Increase of Current and Voltage”, U.S. Pat. No. 4,566,051, published on Jan. 21, 1986. In this circuit, the entire energy (snubber energy) stored in the load-relief inductors and load-relief capacitors is fed back into the DC voltage intermediate circuit. However, this requires a high outlay on circuitry.
A further disadvantage of all known switching load-relief networks for three-point converters is that the switching losses due to the high commutation voltage (half the intermediate circuit voltage in the three-point converter) can be reduced only to a limited extent and with a high outlay on components.
For the topology of two-point converters, in addition to the diverse snubber circuits which are likewise used, principles are also known in which low-loss switching is achieved by a commutation voltage of almost zero. For this purpose, an electrical network for temporarily decoupling the commutation voltage from the intermediate circuit voltage during the switching operations is incorporated between the intermediate circuit capacitor and the bridge paths of the converter, as described e.g. in Salama, S, Tadros, Y.: “Quasi Resonant 3-Phase IGBT Inverter”, IEEE-PESC Conference Records, 1995. In this case, the commutation voltage can oscillate almost to zero by a resonant operation.
To summarize, it may be ascertained that the snubber circuits used to date in conventional NPC three-point converters ensure only a limited reduction of switching losses in the main switches on account of the functional principle of the snubber circuits. In many snubbers, the snubber energy is not fed back into the DC voltage intermediate circuit but rather is converted into a heat loss in the switches and the protective circuit. Furthermore, the outlay on components and the costs of conventional snubbers are considerable.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a three-point converter and a method for its operation which overcomes the above-mentioned disadvantages of the prior art methods and devices of this general type, which realizes very low-loss switching of the main switches in the three-point converter.
With the foregoing and other objects in view there is provided, in accordance with the invention, a three-point converter, including:
a main positive pole and a main negative pole; an upper bridge half having main switches and a lower bridge half having main switches;
an immediate circuit having a center tap, a positive pole, a negative pole, and an intermediate circuit voltage;
upper neutral point clamped diodes (NPC diodes) disposed between and connecting the upper bridge half to the center tap and lower NPC diodes disposed between and connecting the lower bridge half to the center tap;
a first decoupling network connected to the upper bridge half and having inputs and outputs, one of the inputs of the first decoupling network is connected to the positive pole of the intermediate circuit and one of the outputs of the first decoupling network is connected to the main positive pole, remaining inputs of the inputs of the first decoupling network are connected to the center tap, remaining outputs of the outputs of the first decoupling network are connected via the upper NPC diodes to the upper bridge half;
a second decoupling network is connected to the lower bridge half and has inputs and outputs, one of the inputs of the second decoupling network is connected to the negative pole of the intermediate circuit and one of the outputs of the second decoupling network is connected to the main negative pole, remaining inputs of the inputs of the second decoupling network are connected to the center tap, remaining outputs of the outputs of the second decoupling network are connected via the lower NPC diodes to the lower upper bridge half; and
a commutation voltage for the main switches of the upper bridge half and the main switches of the lower bridge half are decoupled from a halved intermediate circuit voltage independently of one another by the first decoupling network and the second decoupling network.
The particular advantages that can be obtained by the invention are that the abovementioned disadvantages, for example generation of heat loss, high outlay on components, and high costs of the snubbers for three-point converters are avoided. The invention includes the use of the decoupling of the commutation voltage from the intermediate circuit voltage by two separate protective circuits in the form of the decoupling networks for the upper and lower bridge halves in the three-point converter in a separate manner. The two decoupling networks operate completely independently of one another. They ensure a commutation voltage of almost zero for their respective bridge half, while half the intermediate circuit voltage is present at the other bridge half. Overall, the circuit has a moderate outlay on active and passive components. The limiting of the rate of current rise di/dt and the rate of voltage rise du/dt is reliably ensured. In addition, the circuit affords protection for the case where the main switches are short-circuited, by limiting the rate of rise of the short-circuit current.
As already noted, independent commutation in the upper bridge half and in the lower bridge half is possible. This also advantageously permits direct commutations from the upper to the lower bridge half “positive voltage to negative voltage” and back.
Other features which are considered as characteristic for the invention are set f

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Three-point converter and method for its operation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Three-point converter and method for its operation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Three-point converter and method for its operation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2512412

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.