Capacitively coupled RF-plasma reactor

Electric heating – Metal heating – By arc

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S121520, C219S121410, C156S345420, C118S7230IR

Reexamination Certificate

active

06281469

ABSTRACT:

BACKGROUND OF THE INVENTION
Customary, capacitively coupled RF-plasma reactors comprise first and second mutually spaced electrodes which concomitantly confine the plasma reaction volume. Besides of the two electrodes, their electrode conductive surfaces, no further electroconductive parts act as a third electrode with an externally applied electrical potential into the plasma reaction volume. Therefore, typical capacitively coupled RF-plasma reactors are also said “diode type” reactors. Confining the plasma reaction volume between the two electrodes which are mutually driven at electric RF potential is normally achieved in providing a spacing at the border of the two electrodes which suffices for electric isolation in terms of DC, but which prevents spreading of the plasma discharge outside the space confined by the two electrodes. This may be achieved e.g. by spacing the two electrodes at their periphery by a distance smaller than dark space distance at the respective operating conditions.
Such capacitively coupled RF-plasma reactors have been used for many years in the field of plasma processing, especially for treating flat substrates such as silicon wafers.
The most common applications of such reactors are Plasma-Enhanced Chemical Vapour Deposition (PECVD) and Plasma Dry Etching. Plasma Dry Etching can be divided into Reactive Ion Etching (RIE), in which ion bombardment is used to promote an anisotropic etching, or in Plasma Etching (PE), in which ion bombardment is to be avoided.
Plasma cleaning, removal of a polymer resist (Ashing) or plasma induced surface activation of workpieces can also be performed in a capacitively coupled RF plasma reactor. Most such reactors are construed with planar electrodes.
In these applications the plasma is generated by a driving RF voltage, most commonly for industrial applications at a frequency of 13.56 MHz.
An RF-driven plasma develops a large self bias voltage between the plasma and the plasma reaction volume surrounding walls which are, as was stated, the electrode surfaces. This is due to the rectifying effect of the RF voltage across the plasma sheath by the plasma sheath according to the dark space adjacent to each of the electrode surfaces towards the plasma discharge or reaction volume. As a consequence, in a classical capacitively coupled RF reactor the ion bombardment of the workpiece or substrate is governed by the ratio between the two electrode surface areas which are in contact with the plasma discharge. Most plasma self bias, enhancing ion bombardment, arises adjacent to the electrode surface of the smaller electrode area, and the potential difference across the sheath or dark-space adjacent to the larger area electrode is accordingly smaller. This effect is conveniently exploited by plasma process designers to taylor the ion bombardment on the substrate. E.g. for RIE the workpiece or substrate is placed adjacent or on the smaller-area electrode coupled to the plasma which results in larger ion bombardment. Inversively, for PE the workpiece is placed adjacent or on the larger-area electrode where ion bombardment is smaller.
There is today a need for plasma processing of large surface workpieces as e.g. of large surface glass plates. E.g. the flat display industry is today considering manufacturing on such plates of about 1 m
2
. The type of processes to be performed to produce the pixel related electronic circuits on such glass plates are of the same nature as the processes used in micro-electronics, but have to be performed on significantly larger surface workpieces.
If a large surface substrate is to be processed by a capacitively coupled RF plasma reactor and at process conditions similar to those as used when treating silicon wafers, the plasma gap (the distance between the two electrodes, e.g. of a planar capacitive reactor) must be kept at the predetermined value in order to achieve the number of collisions for exited species as desired. Thus, a typical value for plasma gap is between 1 and 10 cm (both limits included).
With the large surface workpieces and such plasma gaps the electrodes of the reactor take a very extended aspect ratio and the electrode surface area ratio becomes close to 1. This implies that in a capacitively coupled RF plasma reactor for large surface workpieces there is almost no control of ion bombardment. The ion bombardment occurs substantially equally at both electrode surfaces. Such a situation is strongly limiting processing large-size workpieces and especially large-size substrates by known capacitively coupled RF plasma processes as they were developed for the micro-electronic industry.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a capacitively coupled RF plasma reactor which allows treatment of large workpiece surfaces with an accurate control of ion bombardment onto the respective electrode surfaces and thus an adjacent workpiece, be it to a desired low or to a desired high level.
This is inventively achieved by the capacitively coupled RF-plasma reactor, comprising
a first and a second electrode arrangement mutually spaced and confining a plasma reaction volume,
at least one of the electrode arrangements comprising electrically mutually isolated sub-electrodes,
a first group of the sub-electrodes being commonly connected to a first electric input,
a second group of the sub-electrodes being commonly connected to a second electric input.
This concept of the novel capacitively coupled RF-plasma reactor thus substitutes at least one of the two customary used reactor electrodes by an array of sub-electrodes which by means of their respective first and second electric inputs may be independently and thus differently electrically operated, usually but not exclusively with RF voltages.
In a most preferred embodiment the sub-electrodes of one group and the sub-electrodes of the second group alternate periodically, thus e.g. one after the other as considered at least along one direction along the subdivided electrode arrangement. In the preferred mode of realisation where sub-electrodes of the at least two sub-electrode groups respectively connected to different electric inputs, especially RF inputs, are periodically alternating, the distance from one sub-electrode connected to one RF input to the next such sub-electrode connected to the same RF input and thus local periodicity of the sub-electrode pattern with respect to their electric feed should be of the order or less than the extent of the plasma gap between the two mutually facing electrode arrangements. This makes sure that the workpiece surface to be treated is subjected to an “averaged” effect of plasma discharge.
In a simplified consideration it may be said that with the inventive reactor the workpiece surface to be treated is exposed to a multitude of different sub-RF plasma discharges generated in local parallelism and operated at selectable and thus mutually different RF signal amplitudes and/or phasing and/or frequencies and/or voltage-shapes and which nevertheless interact in the plasma reaction volume to result in the said “averaged” effect.


REFERENCES:
patent: 5609690 (1997-03-01), Watanabe et al.
patent: 4404077 (1995-08-01), None
patent: 0099174 (1983-05-01), None
patent: 06005522 (1994-01-01), None
patent: 06211649 (1994-09-01), None
patent: 07 226395 (1995-08-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Capacitively coupled RF-plasma reactor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Capacitively coupled RF-plasma reactor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Capacitively coupled RF-plasma reactor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2507115

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.