Methods and apparatus for processing a sample of...

Chemistry: electrical and wave energy – Processes and products – Electrophoresis or electro-osmosis processes and electrolyte...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S450000, C204S452000, C204S453000, C204S455000, C204S600000, C204S601000, C204S603000, C204S604000, C204S605000, C422S063000, C422S067000

Reexamination Certificate

active

06207031

ABSTRACT:

BACKGROUND OF THE INVENTION
The human genome includes stretches of DNA composed of short tandem repeats (STRs). The analysis of such STRs is an important tool for genetic linkage studies, forensics, and new clinical diagnostics because STRs are abundant and their locations have been mapped in genomes.
A typical STR is less than 400 base pairs in length, and includes repetitive units that are two to seven base pairs in length. STRs can define alleles which are highly polymorphic due to large variations between individuals in the number of repeats. For example, four loci in the human genome CSF1PO, TPOX, THO1, and vWA (abbreviated CTTv) are characterized by an STR allele which differs in the number of repeats. Two repeating units are found at these loci: AATG for TPOX and THO1, and AGAT for CSF1PO and vWA.
In general, STR analysis involves generating an STR profile from a DNA sample, and comparing the generated STR profile with other STR profiles. Generating an STR profile typically involves dying or tagging STRs within a DNA sample, separating the tagged STRs within the sample using electrophoresis (applying an electric field), and recording the tagged STRs using a detector (e.g., a laser and a scanner).
One procedure for generating an STR profile uses an elongated gel plate (or slab gel) that is approximately 35 cm long. In general, this process (hereinafter referred to as “the gel plate process”) involves depositing a tagged DNA sample on an area of the gel plate, separating the STRs within the tagged DNA sample on the gel plate using electrophoresis, and scanning the gel plate with a detector to record the tagged STRs. Typically, the gel plate process requires two to three hours to complete.
Another procedure for generating an STR profile uses a capillary that is 50 to 75 microns in diameter. This process (hereinafter referred to as “the capillary process”) generally involves placing a tagged DNA sample at one end of a capillary, and drawing the sample through the capillary using electrophoresis to separate the STRs. A detector records the STRs by scanning a portion of the capillary.
Typically, STR separation is faster in the capillary process than in the gel plate process. In general, an increase in electrophoresis current results in an increase in STR separation speed, and a higher electrophoresis current typically can be applied to the capillary than to the gel plate because the capillary more easily dissipates heat (caused by the current) which would otherwise skew the separation results. A typical capillary process requires between 10 minutes and one hour to complete.
Another procedure for generating an STR profile uses a microchip (or chip) made of durable transparent glass or plastic. A typical microchip is a monolithic structure that is planar in shape. Such a microchip includes multiple pairs of channels (channel pairs) that run in a coplanar manner with the plane of the microchip. An individual STR separation can be performed at each channel pair. Each channel pair includes a long channel and a short channel. The short channel intersects the long channel near one end of the long channel and at a 90 degree angle. In some microchips, the short channel includes a jog where it intersects the long channel such that portions of the short channel are parallel but not co-linear. Typically, a microchip is formed using photolithography and chemical etching techniques to produce channel structures in fused silica wafers.
An STR separation process that uses a microchip (hereinafter referred to as “the microchip process”) generally involves orienting the microchip so that it and the channels within lie horizontally (i.e., perpendicular to the direction of gravity) and depositing a sample of tagged DNA over a hole in the upper surface of the microchip that connects with one end of the short channel of a channel pair. Next, the DNA sample is drawn horizontally through the short channel using electrophoresis such that STRs within the sample are partially separated along the short channel. Then, a portion of the sample at the intersection of the long and short channels is further separated along the long channel using electrophoresis. A detector records the STRs in a manner similar to that of the gel plate and capillary processes.
The microchip process provides advantages over the gel plate and capillary processes. First, the microchip process requires less time to complete than the gel plate and capillary processes because, in the microchip process, very large STRs (which impede STR separation in the gel plate and capillary processes) are removed from the DNA sample during electrophoresis along the short channel and thus do not impede STR separation along the long channel. Accordingly, STR separation along the long channel takes no more than a few minutes. Second, a microchip may include multiple channel pairs such that multiple samples can be separated and scanned simultaneously. Nevertheless, significant decreases in electrophoretic run-times would greatly increase the speed of STR analysis.
Conventional high-speed DNA genotyping using a microchip is described in an article entitled “High-Speed DNA Genotyping Using Microfabricated Capillary Array Electrophoresis Chips”, Analytical Chemistry, Vol. 69, No. 11, Jun. 1, 1997 on pages 2181 through 2186, the teachings of which are hereby incorporated by reference in their entirety. Ultra-high-speed DNA sequencing using capillary electrophoresis chips is described in an article entitled “Ultra-High-Speed DNA Sequencing Using Capillary Electrophoresis Chips”, Analytical Chemistry, Vol. 67, No. 20, Oct. 15, 1995 on pages 3676 through 3680, the teachings of which are hereby incorporated by reference in their entirety.
SUMMARY OF THE INVENTION
In general, the term “biomolecular analyte” refers to both non-synthetic and synthetic nucleic acids (e.g., DNA and RNA) and portions thereof, and biological proteins. Described herein are practical ultra-fast techniques for allelic profiling of such biomolecular analyte. In particular, the techniques involve using a microfluidic electrophoresis device to analyze short tandem repeats (STRS) within a DNA sample. An assay method of the present invention has made it possible to rapidly achieve baseline-resolved electrophoretic separations of single-locus STR samples. In one embodiment, the assay permits baseline-resolved electrophoretic separations of single-locus STR samples in approximately 30 seconds. In addition, analysis of samples (e.g., PCR samples) containing loci defined or characterized by an STR which differs in the number or repeats is performed rapidly (e.g., at a rate which represents a 10-to-100-fold improvement in speed relative to capillary or slab gel systems) using the allelic profiling assay described herein. For example, analyses of PCR samples containing the four loci CSF1PO, TPOX, THO1 and vWA (abbreviated as CTTv) can be performed in less than two minutes. This constitutes a 10-to-100-fold improvement in speed relative to capillary or slab gel systems.
Also described herein is a separation device (or test module) useful in an allelic profiling assay of the present invention. The separation device includes a microfabricated channel device having a channel of sufficient dimensions in cross-section and length to permit a sample to be analyzed rapidly. In one embodiment, the separation device consists of a microfabricated channel 45 &mgr;m×100 &mgr;m in cross-section and 26 mm in length, that is filled with a replaceable polyacrylamide matrix operated under denaturing conditions at 50° C. A fluorescently labeled STR ladder is used as an internal standard for allele identification. Samples analyzed by the assay method can be prepared by standard procedures and only small volumes (e.g., 4 &mgr;L) are required per analysis. The device is capable of repetitive operation and is suitable for automated high-speed and high-throughput applications.
The term “test plate” is used hereinafter to refer to a dielectric structure having an intersecting channel pair structure. Other terms tha

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for processing a sample of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for processing a sample of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for processing a sample of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2506279

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.