Single bend actuator cupped paddle ink jet printing mechanism

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S020000, C347S044000, C347S047000

Reexamination Certificate

active

06217153

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
FIELD OF THE INVENTION
The field of the invention relates to the field of inkjet printing devices and in particular, discloses a single bend actuator cupped paddle inkjet printing device.
BACKGROUND OF THE INVENTION
Many different types of printing have been invented, a large number of which are presently in use. The known forms of printing have a variety of methods for marking the print media with a relevant marking media. Commonly used forms of printing include offset printing, laser printing and copying devices, dot matrix type impact printers, thermal paper printers, film recorders, thermal wax printers, dye sublimation printers and ink jet printers both of the drop on demand and continuous flow type. Each type of printer has its own advantages and problems when considering cost, speed, quality, reliability, simplicity of construction and operation etc.
In recent years, the field of ink jet printing, wherein each individual pixel of ink is derived from one or more ink nozzles has become increasingly popular primarily due to its inexpensive and versatile nature.
Many different techniques on ink jet printing have been invented. For a survey of the field, reference is made to an article by J Moore, “Non-Impact Printing: Introduction and Historical Perspective”, Output Hard Copy Devices, Editors R Dubeck and S Sherr, pages 207-220 (1988).
Ink Jet printers themselves come in many different types. The utilisation of a continuous stream ink in ink jet printing appears to date back to at least 1929 wherein U.S. Pat. No. 1,941,001 by Hansell discloses a simple form of continuous stream electro-static ink jet printing.
U.S. Pat. No. 3,596,275 by Sweet also discloses a process of a continuous ink jet printing including the step wherein the ink jet stream is modulated by a high frequency electro-static field so as to cause drop separation. This technique is still utilized by several manufacturers including Elmjet and Scitex (see also U.S. Pat. No. 3,373,437 by Sweet et al)
Piezoelectric ink jet printers are also one form of commonly utilized ink jet printing device. Piezoelectric systems are disclosed by Kyser et. al. in U.S. Pat. No. 3,946,398 (1970) which utilizes a diaphragm mode of operation, by Zolten in U.S. Pat. No. 3,683,212 (1970) which discloses a squeeze mode of operation of a piezoelectric crystal, Stemme in U.S. Pat. No. 3,747,120 (1972) discloses a bend mode of piezoelectric operation, Howkins in U.S. Pat. No. 4,459,601 discloses a piezoelectric push mode actuation of the ink jet stream and Fischbeck in U.S. Pat. No. 4,584,590 which discloses a shear mode type of piezoelectric transducer element.
Recently, thermal ink jet printing has become an extremely popular form of ink jet printing. The ink jet printing techniques include those disclosed by Endo et al in GB 2007162 (1979) and Vaught et al in U.S. Pat. No. 4,490,728. Both the aforementioned references disclose ink jet printing techniques rely upon the activation of an electrothermal actuator which results in the creation of a bubble in a constricted space, such as a nozzle, which thereby causes the ejection of ink from an aperture connected to the confined space onto a relevant print media. Printing devices utilizing the electro-thermal actuator are manufactured by manufacturers such as Canon and Hewlett Packard.
As can be seen from the foregoing, many different types of printing technologies are available. Ideally, a printing technology should have a number of desirable attributes. These include inexpensive construction and operation, high speed operation, safe and continuous long term operation etc. Each technology may have its own advantages and disadvantages in the areas of cost, speed, quality, reliability, power usage, simplicity of construction operation, durability and consumables.
When creating a large number of inkjet nozzles which together form a printhead, it is necessary or desirable to ensure that the printhead is of a compact form so as to ensure that the printhead takes up as small a space as possible. Further, it is desirable that any construction of a printhead is as simple as possible and preferably, the number of steps in construction are extremely low, therefore ensuring simplicity of manufacture. Further, preferably each ink ejection nozzle is of a standard size and the ink forces associates with the ejection are regular across the nozzle.
Further, where the ink ejection mechanism is of a mechanical type attached to an actuator device, it is important to ensure that a substantial clearance is provided between an ink ejection nozzle and the surface of the paddle. Unless a large clearance is provided (of the order of 10□m in the case of a 40□m nozzle) a number of consequential problems may arise. For example, if a mechanical paddle ejection surface and nozzle chamber walls are too close, insufficient ink will be acted on by the paddle actuator so as to form a drop to be ejected. Further, high pressures and drag is likely to occur where movement of a paddle occurs close to nozzle chamber walls. Further, if the paddle is too close to the nozzle, there is a danger that an unwanted meniscus shape may occur after ejection of an ink drop with the ink meniscus surface attaching to the surface of the paddle.
Further, should the ink ejection mechanism be formed on a silicon wafer type device utilizing standard wafer processing techniques, it is desirable to minimize the thickness of any layer of material when forming the system. Due to differential thermal expansions, it is desirable to ensure each layer is of minimal thickness so as to reduce the likelihood of faults occurring during the fabrication of a printhead system due to thermal stress. Hence, it is desirable to construct a printhead system utilizing thin layers in the construction process.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an alternative form of inkjet printing system.
In accordance with a first aspect of the present invention, there is provided an ink jet printing nozzle arrangement including an ink chamber having an ink ejection nozzle in one wall thereof for the ejection of ink from the ink chamber; a moveable paddle vane located within the ink chamber; an actuator means adapted to move the paddle vane so as to cause ink within the ink chamber to be ejected from the ink ejection nozzle; wherein the paddle vane includes a concave surface in the area adjacent the ink ejection nozzle.
Preferably, the paddle vane includes a cup shaped surface in the area adjacent the ink ejection nozzle. The nozzle arrangement can be formed utilizing normal micro-electro mechanical construction techniques and the concave surface can be formed as the result of the deposition of a film over a pit.
The actuator means can include an actuating portion located externally to the nozzle chamber and operational in an external ambient atmosphere of the arrangement. The ink chamber can further include a slot defined in a wall thereof such that the actuator means communicates with the moveable paddle vane through the slot.
The actuator means can comprise a thermal actuator which includes a conductive heater element having a high bend efficiency such that when an electric current is passed through the conductive heater element, the heater element undergoes thermal expansion causing the actuator means to move the paddle towards the ink ejection nozzle. Preferably, the external surfaces of the slot are profiled so as to minimize any wicking of the ink out of the slot. The profile can include a surface having a protruding rim around the slot and the actuator means can be shaped so as to minimize wicking of ink along the actuator means.
Further, preferably, the paddle vane includes a slit in a surface thereof to assist in the refill flow of ink into the ink chamber.


REFERENCES:
patent: 5447442 (1995-09-01), Swart
patent: 5684519 (1997-11-01), Matoba et al.
patent: 0416540 A2 (1991-03-01), None
patent: 04001051 (1992-01-01), None
“Micro Electro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Single bend actuator cupped paddle ink jet printing mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Single bend actuator cupped paddle ink jet printing mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Single bend actuator cupped paddle ink jet printing mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2503230

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.