Information management system for personal health digitizers

Data processing: database and file management or data structures – Database design – Data structure types

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C707S793000, C707S793000, C707S793000, C709S201000, C709S203000, C705S002000, C705S003000

Reexamination Certificate

active

06278999

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to medical monitoring systems and, in particular, to a centralized hierarchical information management system that functions to collect data over a communication medium from numerous patients and their personal health digitizers for processing and analysis.
Problem
In the field of medical monitoring systems, the traditional measurement paradigm is that of a professional medical practitioner performing measurements, including diagnostic tests, of a patient's physiological characteristics in a controlled environment. These measurements are typically taken on an infrequent basis and generally in response to the patient perceiving that they had encountered a medical problem of a sufficiently severe nature to justify the time and cost of consulting a medical practitioner. It was in the best interest of the professional medical practitioner to perform these measurements in the most accurate manner since the opportunity for data collection may be limited to the single patient visit. Therefore, the measurements or tests were either performed in the office of the medical practitioner or a hospital/laboratory setting using monitoring instruments that are precisely maintained by the professional medical practitioner and/or trained technical support staff. This environment reduces the probability that inaccurate measurements are taken. However, the measurements taken represent only a single point in time view of the patient, without any indication of the baseline measurements that are “normal” for that patient. These isolated measurements provide only limited information to the medical practitioner and often do not indicate temporal variations or subtle anomalies in the physiology of the patient. The medical practitioner can therefore only recognize gross anomalies that are indicative of the presence of a significant problem. This medical monitoring paradigm does not lend itself to the early detection and identification of medical problems, especially those of a transient or intermittent nature, due to the limited data base with which the medical practitioner has to work.
The Advent of Home-Use Biosensors
The new paradigm in the field of medical monitoring systems is for patients to perform their own measurements to reduce the cost and inconvenience of scheduling an appointment with a professional medical practitioner. The patients perform simple non-invasive measurements using sensors that are either single use disposable elements or multi-use elements. Patients have had access to home-use biosensors for many decades. The common thermometer is an example. This “biosensor” measures a person's core temperature, an analog indicator of physiological status. That information is revealed to the patient who then makes a health care related decision. In recent years, biosensors for home use have taken many forms, such as apnea (breathing difficulty) monitors, urine test kits for pregnancy or ovulation detection, glucose monitors for diabetics, etc. Most of these monitors have reflected the analog basis of the measurement (e.g., change in color of a test strip). Conception Technology Incorporated produces a biosensor (OvuSense product) that measures the electrochemical changes driven by reproductive hormones, converting the analog data to digital format.
The fact that home use biosensors are increasingly sophisticated and diverse as well as affordable attests to a large market opportunity that will continue to expand, as personal information about the condition of one's body acquired in the privacy of the home empowers the user relative to appropriate health care decision-making. Sensors that provide digital data, unlike analog test strip devices or mercury thermometers, open up the possibilities inherent in digital data analysis, storage, transmission, etc. The above-noted OvuSense product is representative of this new class of home-use digital-readout biosensors, which are termed Personal Health Digitizers (PHD's) herein.
Telecommunications Technology
Digital communications for nearly all information signals is rapidly supplanting older analog technology. Moreover, the infrastructure for moving very large amounts of data continues to improve. Medical telecommunications, or “telemedicine”, is simply the transmission of medical data and information over these established communication channels. Real-time transmission of digital data now enables the transmission not only of text, but also medical photographs and complex medical information such as X-rays, CAT scans, and cardiac catheterization sessions from remote sites to centers of advanced expertise for interpretation and feedback.
The Holter Monitor for continuous recording of a person's electrocardiogram to detect only occasional (but perhaps deadly) dysrhythmias served as a forerunner for the types of home use monitoring that is now increasingly commonplace. The Holter Monitor not only could provide a continuous record of cardiac activity, but could telecommunicate its recorded patterns over telephone lines to the doctor's office.
Recently, the CheckMate line of home glucose monitors from Cascade Medical, Inc., together with its companion CheckLink telemedicine module, exemplify the expanding possibilities of acquiring direct physiological reading from home users and allowing the telecommunication of that information to the user's doctor or clinic of choice. Communication of this sort allows users to adjust diabetes therapy without the inconvenience and expense of office visits and central laboratory tests.
Information and Information Management (Informatics) In Medicine
The chief impediment to widespread adoption of current electronic information capability by mainstream medicine lies at the doctor-patient interface. Impediments include standardization of data gathering protocols, lack of point-of-care, user-friendly data entry mechanisms, etc. These impediments are being addressed by myriad companies, albeit slowly. There are, however, two emerging societal trends in the U.S. that are poised to drive medical informatics in another direction: the consumer's demand to know, coupled with consumer distrust of the managed care environment.
Certainly, the medical practitioner's ability to manage the informed patient is enhanced if the medical practitioner is the source of the information. Increasingly, consumers are looking elsewhere. Unfortunately, no matter how much information about a specific disease or condition a consumer accumulates, the lay person is not equipped to apply Fat information directly in the care of their own or a loved one's problem. Despite information, they lack the knowledge, expertise and sense of proportion, as well as the pertinent, necessary diagnostic data upon which to base a therapeutic decision.
Another aspect of this problem is that all of the presently available telemedicine systems are point-to-point in nature, in that they require the patient to establish a data communication connection over the telephone lines to the medical practitioner's office to transfer information. The inconvenience of such a protocol renders this procedure impractical for routine data collection or data collection relating to non-life threatening medical problems and requires interpretation and report to the consumer by the physician. The sensors used for data collection relating to these types of situations are used only for the edification of the patient or infrequent data communication to the medical practitioner. However, to make such sensors effective in the detection and diagnosis of problems, the data that is collected by the patient must be accurate in nature, frequent and periodic in collection, and communicated to the medical practitioner in a timely manner. Furthermore, the data collected should include sufficient baseline data to enable the medical practitioner to detect anomalies in the pattern of data that is collected over time. However, there is presently no mechanism available to collect data on a frequent basis and co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Information management system for personal health digitizers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Information management system for personal health digitizers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Information management system for personal health digitizers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2501440

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.