Spherical eductor atomizer

Agitating – Having specified feed means – By suction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C366S181500, C366S338000, C239S425000, C239S425500, C239S432000

Reexamination Certificate

active

06203186

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to fluid flow devices, and more particularly, to an improved fluid flow mixing device, which produces a pulling or suction effect over a device by a fluid stream moving through a convergent-divergent or a convergent nozzle.
2. Description of the Prior Art
The majority of presently known fluid flow mixers work by using a plurality of concentric, hollow, cylindrical ducts or tubes, which are axially aligned with respect to each other. The concentric ducts or tubes have different diameters and lengths, whereby, when fluid is flowing inside these tubes, a first fluid discharged from the smaller diameter tube travels at a higher speed into the larger diameter tube, to thereby pull or suck a second fluid through an opening formed above the surface of the inner tube. Due to the large change in cross sectional area between the smaller and larger diameter tubes, a loss in pressure is produced. Furthermore, because there is only one opening for drawing in the second fluid, the mixing of the fluids together, especially in the beginning, is not uniform. Additionally, the smaller diameter tube must be longer than the larger diameter tube, so as to accelerate the fluid flowing inside.
SUMMARY OF THE INVENTION
Accordingly, it is a general object of the present invention to provide an improved and simplified mixing device. It is a particular object of the present invention to provide an improved mixing device in which a high speed fluid flow passes over a first element formed from a spherical body of revolution, which spherical body of revolution is held in a convergent nozzle. It is a more particular object of the present invention to provide improved fluid flow expansion, between a divergent nozzle part and a hollow, cylindrical element held in the nozzle. It is a still further particular object of the present invention to change the direction of fluid flow in a mixing device by the action of a smooth annular connection, which annular connection joins a cylindrical element with a second element formed from a convex body of revolution, outside of a nozzle, adjacent to an exit of the nozzle. It is yet another particular object of the present invention to expand a fluid flow over a convex body of revolution outside of a nozzle exit. It is yet a still further object of the present invention to produce a drawing or sucking by the action of a fluid flow over a spherical mixing device held within a convergent-divergent nozzle. It is yet another object of the present invention to draw a second fluid into a first fluid within an annular nozzle, which nozzle is formed by a convergent-divergent system and a spherical mixing device therein. It is yet a still further particular object of the present invention to produce a uniform mixing of different fluids from the beginning, between a main fluid flow and a secondary fluid flow drawn into the main fluid flow. It is a still further particular object of the present invention to atomize a mixed fluid flow, over a second convex body of revolution, outside an exit opening of a nozzle. It is yet a still further particular object of the present invention to mix an atomizing fluid flow with surrounding air by using a cylindrical sleeve placed around a nozzle and a second body of revolution, which second body of revolution is provided with a series of circular openings formed around its periphery, adjacent to an exit of a nozzle. It is yet a still further particular object of the present invention to reduce the size and weight of a mixing device that is formed as part of an annular nozzle, wherein the drawing or pulling of a second fluid is made through a series of circular openings formed around the periphery of a hollow, cylindrical section, which section. It is yet a still more particular object of the present invention to provide for the mixing of a plurality of fluids in a more consistent manner so as to be capable of being used in open and hot places. It is yet a still further particular object of the present invention to produce a mixing of a plurality of fluids at various pressures in a line. It is a still further particular object of the present invention to provide a fluid flow mixing device in which various diameter bodies are provided outside of a convergent nozzle so as to obtain a desired flow pattern. It is still yet a further particular object of the present invention to produce a mixing and fluid flow expansion of a plurality of fluids in a constant cross section nozzle having a hollow, cylindrical portion therein. And, it is a final further particular object of the present invention to produce fluid mixing and fluid flow expansion between a convergent nozzle throat portion and a hollow, cylindrical element held therein.
The present invention overcomes the problems with prior art devices, by making use of a mixing device, which includes a first body having the shape of a convex body of revolution with a semi-spherical form. This device is mounted in a convergent nozzle, and the fluid flow through the nozzle is accelerated to a maximum speed, because of the decrease in nozzle area at a throat area, after an expansion inside the nozzle in a hollow, cylindrical section and a divergent nozzle portion. This expansion of the fluid also occurs over a second element, having the shape of a convex body of revolution, after the mixed fluids exit the nozzle. That is, the device of the present invention produces a total expansion of fluids greater that with known systems. A second fluid is pulled or sucked into a first fluid after the flow of fluid has accelerated in the nozzle, by the action of a series of openings, formed peripherally around the outside surface of a hollow, cylindrical element aligned with the flow of the first fluid, along a longitudinal axis of the nozzle. This causes a uniform drawing or sucking in of a second fluid into the interior of the first fluid stream. Therefore, in a selected case, the second fluid being drawn in enters around the internal surface of the first fluid stream flowing through the nozzle. The second convex body of revolution is provided with an external, cylindrical sleeve, and a series of circular openings are formed through its surface, adjacent the nozzle exit, thereby allowing the expanding fluid flow to mix with surrounding air, to improve the atomization of the mixed fluid flow.
Additionally, the present invention may use a convergent nozzle with the nozzle followed by an elongated, cylindrical element of constant diameter, which constant diameter is the same as the diameter of the nozzle throat section, and the elongated, cylindrical element may selectively have a second convex body of revolution.


REFERENCES:
patent: 2538948 (1951-01-01), Richards
patent: 3031147 (1962-04-01), Goodrie
patent: 3677522 (1972-07-01), Hargash
patent: 3735778 (1973-05-01), Garnier
patent: 3799195 (1974-03-01), Hermans
patent: 4116382 (1978-09-01), Clerk
patent: 4343434 (1982-08-01), Haruch
patent: 4592506 (1986-06-01), Capes et al.
patent: 4932591 (1990-06-01), Cruz
patent: 5860598 (1999-01-01), Cruz
patent: 5992529 (1999-11-01), Williams

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spherical eductor atomizer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spherical eductor atomizer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spherical eductor atomizer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2500912

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.