Three dimensional micromachined electromagnetic device and...

Communications: radio wave antennas – Antennas – Spiral or helical type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S587000, C427S250000

Reexamination Certificate

active

06271802

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to a method for making a true three-dimensional (3D) electromagnetic device, e.g., a micro-antenna, and the device made thereby. The present invention is directed to a method of for making a true 3 D electromagnetic device which exhibits wideband impedance characteristics, circular polarization, allows a simple feed network and left and right polarizations are easily realized. The present invention is further directed to making a helical micro-antenna, which is particularly advantageous for use in the THz frequency range and the antenna made thereby.
BACKGROUND OF THE INVENTION
Antennas have been in existence for many years. Planar and whisker antennas have been used in research of the low THz frequency range for some time. The THz region is of interest, for example, in MRI applications. Current art uses planar microstrip antennas. The current antennas do not provide a true 3 D structure needed for performance under certain conditions, e.g., circular polarization in the THz frequency range.
A low-cost method for successfully fabricating arrays of true 3-D helical antennas for this frequency range could greatly increase the usefulness of the THz frequency range, due to increased antenna gain and the ability to generate circular polarized radiation patterns. Further, other applications requiring a 3 D electromagnetic device would benefit from such a low cost method.
SUMMARY OF THE INVENTION
Therefore, it is an object of the present invention to provide a three dimensional micro-electromagnetic device. It is further an object of the present invention to provide a method for making a three-dimensional micro-electromagnetic device. It is another object of the present invention to provide configurations for reducing energy required to initiate deposition on a thermally conducting substrate.
One or more of these objects, as well as other objects, may be realized by a method of forming a three-dimensional electromagnetic device including providing a conductive surface and laser chemical vapor depositing a three-dimensional structure on the conductive surface, thereby forming the electromagnetic device. A column may be formed on a semiconductor substrate and the depositing initiated on the column. The electromagnetic device may be an antenna, with the conductive surface serving as a ground plane for the antenna.
The providing may include forming a bolometer and the deposition forms the three dimensional structure on the bolometer. The method may farther include forming a pit under the center of the bolometer and performing the deposition on a portion of the bolometer over the pit. The forming of the bolometer may further include suspending the bolometer on a conductive substrate. A compensating bolometer for the antenna may be formed.
The electromagnetic device formed may be an array of electromagnetic devices. The deposition of each device of the array may be performed simultaneously.
One or more of these objects, as well as other objects, may be realized by growing three-dimensional structures on a thermally conductive substrate including forming a column on the thermally conductive substrate and laser chemical vapor deposition the three dimensional structure, including focussing a laser beam on the column. The forming may include providing a tip on the column with a diameter which is less than the diameter of the focal point of the laser. The forming may include providing a column having a height which is at least four times its diameter.
One or more of these objects, as well as other objects, may be realized by an electromagnetic device including a conductive surface and a fiber grown by laser chemical vapor deposition and having a three-dimensional structure formed on the conductive surface. The three-dimensional structure may be a helix. The helix may be a square helix. The three-dimensional structure may be an array of dipoles. The conductive surface may be a bolometer. The three-dimensional structure may be ferromagnetic. One or more of these objects, as well as other objects, may be realized by a substrate on which a structure grown by laser chemical vapor deposition is to be formed comprising a thermally conductive surface and a thermally conductive column formed on the thermally conductive surface, the structure to be grown starting-up on the thermally conductive column. The tip of the column may have a diameter which is less than the diameter of the focal point of a laser used for the laser chemical vapor deposition. The column may have a height which is at least four times its diameter.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.


REFERENCES:
patent: 4942057 (1990-07-01), Steinwandel et al.
patent: 5147819 (1992-09-01), Yu et al.
patent: 5164222 (1992-11-01), Gottsleben et al.
patent: 5171733 (1992-12-01), Hu
patent: 5760398 (1998-06-01), Blackwell et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Three dimensional micromachined electromagnetic device and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Three dimensional micromachined electromagnetic device and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Three dimensional micromachined electromagnetic device and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2499587

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.