Incremental printing of symbolic information – Ink jet – Ejector mechanism
Reexamination Certificate
1999-08-09
2001-01-30
Moses, Richard (Department: 2853)
Incremental printing of symbolic information
Ink jet
Ejector mechanism
C347S047000
Reexamination Certificate
active
06179414
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to inkjet and other types of printers, and more particularly, to the printhead portion of an ink cartridge used in such printers.
BACKGROUND OF THE INVENTION
Thermal inkjet print cartridges operate by rapidly heating a small volume of ink to cause the ink to vaporize and be ejected through one of a plurality of orifices so as to print a dot of ink on a recording medium, such as a sheet of paper. Typically, the orifices are arranged in one or more linear arrays in a nozzle member. The properly sequenced ejection of ink from each orifice causes characters or other images to be printed upon the paper as the printhead is moved relative to the paper. The paper is typically shifted each time the printhead has moved across the paper. The thermal inkjet printer is fast and quiet, as only the ink strikes the paper. These printers produce high quality printing and can be made both compact and affordable.
In one prior art design, the inkjet printhead generally includes: (1) ink channels to supply ink from an ink reservoir to each vaporization chamber proximate to an orifice; (2) a metal orifice plate or nozzle member in which the orifices are formed in the required pattern; and (3) a silicon substrate containing a series of thin film resistors, one resistor per vaporization chamber.
To print a single dot of ink, an electrical current form an external power supply is passed through a selected thin film resistor. The resistor is then heated, in turn superheating a thin layer of the adjacent ink within a vaporization chamber, causing explosive vaporization, and, consequently, causing a droplet of ink to be ejected through an associated orifice onto the paper.
One prior art print cartridge is disclosed in U.S. Pat. No. 4,500,895 to Buck et al., entitled “Disposable Inkjet Head,” issued Feb. 19, 1985 and assigned to the present assignee.
In one type of prior art inkjet printhead, described in U.S. Pat. No. 4,683,481 to Johnson, entitled “Thermal Ink Jet Common-Slotted Ink Feed Printhead,” ink is fed from an ink reservoir to the various vaporization chambers through an elongated hole formed in the substrate. The ink then flows to a manifold area, formed in a barrier layer between the substrate and a nozzle member, then into a plurality of ink channels, and finally into the various vaporization chambers. This prior art design may be classified as a center feed design, whereby ink is fed to the vaporization chambers from a central location then distributed outward into the vaporization chambers. Some disadvantages of this type of prior art ink feed design are that manufacturing time is required to make the hole in the substrate, and the required substrate area is increased by at least the area of the hole. Further, once the hole is formed, the substrate is relatively fragile, making handling more difficult. Further, the manifold inherently provides some restriction on ink flow to the vaporization chambers such that the energization of heater elements within the vaporization chambers may affect the flow of ink into nearby vaporization chambers, thus producing crosstalk. Such crosstalk affects the amount of ink emitted by an orifice upon energization of an associated heater element.
SUMMARY OF THE INVENTION
This invention provides an improved ink flow path between an ink reservoir and vaporization cavities in an inkjet printhead. In the preferred embodiment, a barrier layer containing ink channels and vaporization chambers is located between a rectangular substrate and a nozzle member containing an array of orifices. The substrate contains tow linear arrays of heater elements, and each orifice in the nozzle member is associated with a vaporization chamber and heater element. The ink channels in the barrier layer have ink entrances generally running along two opposite edges of the substrate so that ink flowing around the edges of the substrate gain access to the ink channels and to the vaporization chambers.
Using the above-described ink flow path (i.e., edge feed), there is no need for a hole or slot in the substrate to supply ink to a centrally located ink manifold in the barrier layer. Hence, the manufacturing time to form the substrate is reduced. Further, the substrate area can be made smaller for a given number of heater elements. The substrate is also less fragile than a similar substrate with a slot, thus simplifying the handling of the substrate. Further, in this edge-feed design, the entire back surface of the silicon substrate can be cooled by the ink flow across it. Thus, steady state power dissipation is improved.
Additionally, since the central manifold providing a common ink flow channel to a number of ink channels is not required, the ink is able to flow more rapidly into the ink channels and vaporization chambers. This allows for higher printing rates. Still further, by eliminating the manifold, a more consistent ink flow into each vaporization chamber is maintained as the ink ejection sequences are occurring. Thus, crosstalk between nearby vaporization chambers is minimized.
Other advantages will become apparent after reading the disclosure.
REFERENCES:
patent: 4490728 (1984-12-01), Vaught
patent: 4587534 (1986-05-01), Saito
patent: 4942408 (1990-07-01), Braun
patent: 5189437 (1993-02-01), Michaelis
patent: 5278584 (1994-01-01), Keefe
patent: 5305015 (1994-04-01), Schantz
patent: 5305018 (1994-04-01), Schantz
patent: 64-11843 (1989-01-01), None
Childers Winthrop D.
Keefe Brian J.
McClelland Paul H.
Steinfield Steven W.
Trueba Kenneth E.
Hewlett--Packard Company
Moses Richard
LandOfFree
Ink delivery system for an inkjet printhead does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ink delivery system for an inkjet printhead, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink delivery system for an inkjet printhead will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2498709