Method and system for deriving a control signal for a...

Radiant energy – Photocells; circuits and apparatus – Photocell controlled circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C372S028000, C372S032000

Reexamination Certificate

active

06291813

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a method for frequency stabilization of an optical source and, more particularly, to an approach for using data obtained from a frequency stabilization system based on an optical frequency discriminator to stabilize the output of a laser on a particular desired grid channel. This invention mathematically manipulates the data to double the number of channels as compared to prior art methods and allows arbitrary channel spacing about the channels.
BACKGROUND OF THE INVENTION
Accurate wavelength lasers are needed as transmitter sources for Wavelength Division Multiplexed (WDM), Dense Wavelength Division Multiplexed (DWDM) fiber-optic communications, pump lasers for various media such as Erbium doped optical fiber amplifiers (EDFA) or solid state lasers, illumination sources for differential spectroscopy, and other applications requiring compact, precise wavelength sources. In telecommunications, semiconductor lasers have been used because of their small size, low cost, high efficiency, and ability to be modulated at high speed. These sources typically operate in the 1.3 &mgr;m band, which is at the zero dispersion point of conventional optical fibers, and more recently in the 1.55 &mgr;m band because of the loss minima and the availability of EDFA's in this wavelength band.
Dense wavelength division multiplexed optical networks increase the information carrying capacity of a transmission system by loading multiple channels of differing optical frequencies onto a single optical fiber. The channel density of commercial DWDM systems has increased dramatically resulting in narrower frequency spacing between channels. This close channel spacing can be sensitive to crosstalk caused by frequency drifts in which a channel interferes with an adjacent channel. These drifts may be caused by phenomena similar to those occurring due to short-term drift and long-term aging.
While narrow frequency spacing between channels is desirable, prior art methods of achieving narrowed frequency spacing require that the thickness of an etalon optical filter be increased. This is related to the physics of a Fabry-Perot (FP) cavity. For example, in order to achieve 50 GHz spacing between channels using prior art methods, a 2-mm thick etalon is required; however, due to design constraints within a laser module, a 1-mm thick etalon is desired. Using prior art techniques, the minimum achievable spacing between channels using a 1-mm thick etalon is 100 GHz.
The free spectral range (FSR) of the FP etalon is determined by measuring the distance in optical frequency between a pair of adjacent peaks in the transmission spectrum. The transmission occurs at frequencies spaced c/2d apart, where c is the velocity of light and d is the distance between the reflective surfaces of the etalon. The output of a laser has a wavelength, and the point at which that wavelength and the transmission peak of the etalon cross a reference point is normally called a grid channel. In prior art systems this grid is defined at the peaks of the etalon function. The grid of channels is presently defined by the International Telecommunications Union (ITU) at 100 GHz channel spacing with 50 and 25 GHz spacing possible in the near future. Channel spacing will decrease in the future to allow more wavelengths to fit within the fixed bandwidth of the EDFA. Laser temperature determines which grid channel region a laser wavelength will be in at any given point in time.
Systems for stabilizing optical frequencies are employed within DWDM optical networks. Typically, these systems detect an optical frequency using a frequency discriminator in closed loop feedback with an optical source. Optical frequency information is translated into an error signal that is used to correct the source frequency to within some system-specific tolerance. It is well known that a FP etalon exhibits periodic optical transmission characteristics. It is also known that frequency discriminators with characteristics which are precisely aligned to the channel frequency of a DWDM system can be used to advantage, such as for frequency filtering, within such systems. Finally, it is known that FP etalons, used as discriminators, can be employed within DWDM systems when the FSR of the etalon is equal to the channel separation and the transmission peaks of the etalon are aligned with channel frequencies of the system. In prior art systems the laser channels will fall at intervals which are equal to the period of the etalon filter if the FSR, etalon angle to the laser source, and etalon temperature are properly matched to the absolute channel grid.
In addition to stabilizing an optical frequency on a particular grid channel, it may also be desired to switch from one grid channel to a different grid channel. Prior art systems allow changing between channels by simply temperature tuning the laser diode. The problem with these methods is that the laser has a temperature dependence of approximately +0.09 nm/° C. Precise 100 GHz wavelength control based strictly on temperature tuning is acceptable for the best of lasers, such as the type E2500 Electroabsorption Modulated Isolated Laser Module (EM-ILM) produced by Lucent Technologies, Inc., but is expected to be insufficient for a 25-50 GHz spaced system over an expected 25 year system life because of the small margin for drift in the lasers and filters used in these narrowly spaced systems.
SUMMARY OF THE INVENTION
A novel approach to frequency stabilization of a laser is presented. A flexible software method is applied to a pair of detected optical signals, one of which passes through an etalon and the other a reference signal directly from the laser output. In particular, the present invention comprises means for using a Fabry-Perot (FP) etalon for stabilizing an equally spaced comb of frequencies with a frequency separation of half the free spectral range (FSR) of the etalon, and for stabilizing frequencies that are not precisely spaced by either the full FSR or half the FSR. This method also allows arbitrary channel spacing, about these half frequency points, accessible through a software user interface. The detected optical signals are measured and then an algorithm is applied to the normalized difference in amplitude between the two signals. The difference will alternate in polarity as the wavelength of the laser (temperature) is swept. The signal difference is then used as a control signal to drive a thermoelectric cooler (TEC) to vary the temperature of the laser and thus vary (and allow tuning of) the laser output wavelength. By sensing what slope the wavelength of the laser falls upon at startup, a determination can be made as to which direction to move the laser wavelength to reach the desired channel. If needed to move the laser to a different channel, the difference calculation is inverted (by reversing the sign) to lock the laser channels at intervals which will be equal to half the period of the filter. This approach to laser wavelength selection and stabilization provides a stable and accurate laser output. The exact channel position may be defined at the peaks of the etalon function, or at an arbitrary position by adjusting the level where the reference signal crosses the etalon signal. The reference level may be electrically adjusted or adjusted by adding a software gain and offset value to the measured reference signal. Similarly, the etalon value may be electrically adjusted or adjusted by adding a software gain and offset value to the measured etalon signal. This allows for user adjustable wavelength spacing.


REFERENCES:
patent: 5107512 (1992-04-01), Shibutani
patent: 5251275 (1993-10-01), Kuriyama et al.
patent: 5666225 (1997-09-01), Colbourne
patent: 5691989 (1997-11-01), Rakuljic et al.
patent: 5706301 (1998-01-01), Lagerström
patent: 5798859 (1998-08-01), Colbourne et al.
patent: 5825792 (1998-10-01), Villeneuve et al.
patent: 6122301 (2000-09-01), Tei et al.
E2500-Type 2.5 Gbits/s Electroabsorption Modulated Isolated Laser Module(EM-ILM)for Ultra

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for deriving a control signal for a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for deriving a control signal for a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for deriving a control signal for a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2498063

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.