HIV protease inhibitors

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S226200, C514S227500, C514S222500, C514S229200, C514S231200, C514S241000, C544S002000, C544S003000, C544S063000, C544S106000, C544S098000, C544S088000, C544S180000, C544S238000, C544S242000, C544S338000, C544S359000, C544S360000, C544S366000

Reexamination Certificate

active

06271235

ABSTRACT:

In particular, since each of the above-identified applications incorporated by reference was prepared separately, the original applications may use in some instances the same term, label or variable to mean something different. For example, the variable “X” is used in each application, but each application has its own distinct definition of the substituent or moiety represented by this variable. It will be apparent to those skilled in the art that the terms, labels and variables in each application incorporated by reference are limited solely to the disclosure from that application, and may be replaced by other suitable terms, labels and variables or the like representing the particular substituents and moieties. Of course, those skilled in the art will realize that any suitable set of terms, labels and variables may be used to generically or more specifically represent the subject matter disclosed in the present application, including terms, labels, variables, and the like universally applicable to the incorporated disclosures of the above-identified applications and the following disclosures.
BACKGROUND OF THE INVENTION
This invention relates to a novel series of chemical compounds useful as HIV protease inhibitors and to the use of such compounds as antiviral agents.
Acquired Immune Deficiency Syndrome (AIDS) is a relatively newly recognized disease or condition. AIDS causes a gradual breakdown of the body's immune system as well as progressive deterioration of the central and peripheral nervous systems. Since its initial recognition in the early 1980's, AIDS has spread rapidly and has now reached epidemic proportions within a relatively limited segment of the population. Intensive research has led to the discovery of the responsible agent, human T-lymphotropic retrovirus III (HTLV-III), now more commonly referred to as the human immunodeficiency virus or HIV.
HIV is a member of the class of viruses known as retroviruses. The retroviral genome is composed of RNA which is converted to DNA by reverse transcription. This retroviral DNA is then stably integrated into a host cell's chromosome and, employing the replicative processes of the hose cells, produces new retroviral particles and advances the infection to other cells. HIV appears to have a particular affinity for the human T-4 lymphocyte cell which plays a vital role in the body's immune system. HIV infection of these white blood cells depletes this white cell population. Eventually, the immune system is rendered inoperative and ineffective against various opportunistic diseases such as, among others, pneumocystic carini pneumonia, Karposis sarcoma, and cancer of the lymph system.
Although the exact mechanism of the formation and working of the HIV virus is not understood, identification of the virus has led to some progress in controlling the disease. For example, the drug azidothymidine (AZT) has been found effective for inhibiting the reverse transcription of the retroviral genome of the HIV virus, thus giving a measure of control, though not a cure, for patients afflicted with AIDS. The search continues for drugs that can cure or at least provide an improved measure of control of the deadly HIV virus.
Retroviral replication routinely features post-translational processing of polyproteins. This processing is accomplished by virally encoded HIV protease enzyme. This yields mature polypeptides that will subsequently aid in the formation and function of infectious virus. If this molecular processing is stifled, then the normal production of HIV is terminated. Therefore, inhibitors of HIV protease may function as anti-HIV viral agents.
HIV protease is one of the translated products from the HIV structural protein pol gene. This retroviral protease specifically cleaves other structural polypeptides at discrete sites to release these newly activated structural proteins and enzymes, thereby rendering the virion replication-competent. As such, inhibition of the HIV protease by potent compounds may prevent proviral integration of infected T-lymphocytes during the early phase of the HIV-1 life cycle, as well as inhibit viral proteolytic processing during its late stage. Additionally, the protease inhibitors may have the advantages of being more readily available, longer lived in virus, and less toxic than currently available drugs, possibly due to their specificity for the retroviral protease.
In accordance with this invention, there is provided a novel class of chemical compounds that can inhibit and/or block the activity of the HIV protease, which halts the proliferation of HIV virus, pharmaceutical compositions containing these compounds, and the use of the compounds as inhibitors of the HIV protease.
SUMMARY OF THE INVENTION
The present invention relates to compounds falling within formula (1) below, and pharmaceutically acceptable salts thereof, that inhibit the protease encoded by human immunodeficiency virus (HIV) type 1 (HIV-1) or type 2 (HIV-2). These compounds are useful in the treatment of infection by HIV and the treatment of the acquired immune deficiency syndrome (AIDS). The compounds, their pharmaceutically acceptable salts, and the pharmaceutical compositions of the present invention can be used alone or in combination with other antivirals, immunomodulators, antibiotics or vaccines. Compounds of the present invention can also be used as prodrugs. Methods of treating AIDS, methods of treating HIV infection and methods of inhibiting HIV protease are disclosed.
The compounds of the present invention are of the formula (1):
wherein:
Q
1
and Q
2
are independently selected from hydrogen and substituted and unsubstituted alkyl and aryl, and Q
1
and Q
2
may form a ring with G,
Q
3
is selected from mercapto and substituted and unsubstituted alkoxyl, aryloxyl, thioether, amino, alkyl, cycloalkyl, saturated and partially saturated heterocycle, and aryl,
Q
4
-Q
8
are independently selected from hydrogen, hydroxyl, mercapto, nitro, halogen, —O—J, wherein J is a substituted or unsubstituted hydrolyzable group, and substituted and unsubstituted alkoxyl, aryloxyl, thioether, acyl, sulfinyl, sulfonyl, amino, alkyl, cycloalkyl, saturated and partially saturated heterocycle and aryl, and further wherein any one of Q
4
-Q
8
may be a member of a spiro ring and any two of Q
4
-Q
8
may together be members of a ring,
Y and G are independently selected from oxygen, —NH, —N-alkyl, sulfur, selenium, and two hydrogen atoms,
D is carbon or nitrogen,
E is carbon or nitrogen,
Q
9
is selected from hydrogen, halogen, hydroxyl, mercapto, and substituted and unsubstituted alkoxyl, aryloxyl, thioether, amino, alkyl, and aryl, wherein Q
9
may form part of a ring,
A is a carbocycle or heterocycle, which is optionally further substituted,
and B is a carbocycle or heterocycle, which is optionally further substituted,
or a pharmaceutically acceptable salt thereof.
The invention also relates to compounds of formula (1), wherein all variables are the same as those defined above for formula (1) with the exception of D, which is carbon or nitrogen, and is singly bonded to each of the adjacent ring atoms.
The invention more particularly relates to preferred compounds of formula (1) wherein:
at least one of Q
1
and Q
2
is substituted or unsubstituted alkyl and the other is as defined above,
Q
3
is selected from thioether and aryl,
Q
4
-Q
8
are independently selected from hydrogen, hydroxyl, halogen, —O—J, wherein J is a substituted or unsubstituted hydrolyzable group, and substituted and unsubstituted acyl, alkoxyl, amino and alkyl, and further wherein any one or more of Q
4
-Q
8
may form part of a ring,
Y and G are each oxygen,
D is nitrogen,
E is carbon or nitrogen,
Q
9
is hydrogen,
A is a carbocycle or heterocycle that is an aromatic or partially saturated, 5-7 membered mono-ring, which is optionally further substituted,
and B is a heterocycle that is a saturated or partially saturated, 8-12 membered poly-ring, which is optionally further substituted,
or a pharmaceutically acceptable salt thereof.
The invention even

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

HIV protease inhibitors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with HIV protease inhibitors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and HIV protease inhibitors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2492885

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.