Seal for a joint or juncture – Viscous seal
Reexamination Certificate
1998-11-25
2001-05-15
Knight, Anthony (Department: 3626)
Seal for a joint or juncture
Viscous seal
C277S602000, C277S616000, C277S630000, C277S642000, C277S651000
Reexamination Certificate
active
06231055
ABSTRACT:
The present invention relates to sealed articles, especially containers, e.g. for containing electrical conductors, electrical connections, electronic devices, optical fibres, optical devices or the like. Preferred aspects of the invention relate to cable closures, e.g. cable splice closures for enclosing splices between cables. In this specification, by a “cable” is meant a telecommunications cable (either conductive or optical fibre) an electrical cable or other conductive cable, a wire or other conductor, or an optical fibre.
BACKGROUND OF THE INVENTION
International Patent application WO 96/09483 (Raychem) discloses, inter alia, a sealing member comprising an elongate tubular carrier carrying an elongate body of gel sealant. The sealing member includes a formation, preferably integral with the carrier, for attaching the carrier to an object which is to carry the article in use. The formation may, for example, comprise a projection with an enlarged region receivable in an aperture in the object, to anchor the carrier to the object.
In the formation of seals, it is often necessary to provide sealant in a cavity. For example, when sealing around windows or doors, sealant may be required in a cavity in the window, door, window frame or door frame. Also, when containers, e.g. cable closures, are sealed, there may be one or more cavities in which sealant may need to be provided.
SUMMARY OF THE INVENTION
According to a first aspect, the invention provides an article comprising:
(a) an object which includes a cavity; and
(b) a sealing member, comprising:
(i) sealant; and
(ii) a carrier, to which the sealant is attached;
the carrier and/or the object including one or more attachment means whereby, at least in use, the carrier is attached directly to the object such that at least some of the sealant is retained within the cavity.
The invention has the advantage that the sealant of the sealing member may be conveniently and firmly retained in a cavity by virtue of the fact that the sealing member includes a carrier which carries the sealant, and the carrier and/or the object include attachment means by which the carrier may be attached to the object.
As already mentioned, the article may, for example, comprise a container, in which case the object may advantageously comprise at least part of a housing of the container. The container may, for example, be suitable for containing electrical conductors and/or electrical connections and/or electronic devices and/or optical fibres and/or optical devices or the like. The container may, for example, comprise a cable closure.
According to a second aspect, the invention provides a cable closure, comprising:
(a) a housing which includes an opening and a cavity, through each of which, in use, at least one cable may extend; and
(b) a sealing member, comprising:
(i) sealant; and
(ii) a carrier, to which the sealant is attached;
the carrier and/or the housing including one or more attachment means whereby, at least in use, the sealing member is attached directly or indirectly to the housing such that at least some of the sealant is retained within the cavity.
The second aspect of the invention has the advantage that because the sealing member includes a carrier which carries the sealant, and the carrier and/or the housing include attachment means by which the sealing member may be attached directly or indirectly to the housing, the provision of the correct quantity of sealant, the correct positioning of the sealant, and also ease of provision of sealant in the cavity, may generally be assured. The invention, for example, substantially removes the necessity of injecting, pouring or moulding sealant into the cavity (which processes can be difficult and inaccurate). Furthermore, the retention of the sealant in the cavity by means of the attachment means has the advantage that accidental removal or other unwanted movement of the sealant from or in the cavity may generally be avoided. This may be particularly advantageous, for example, if the cable closure is re-opened once in use. If the sealant were not securely retained in the cavity, such re-opening might cause dislodging of the sealant, leading to possible ineffective subsequent sealing and/or contamination.
The sealing member of the cable closure according to the second aspect of the invention is preferably attached to the housing by the carrier being attached directly to the housing by means of the attachment means.
The sealant of the sealing member (according to any aspect of the invention) may generally comprise any suitable sealant. A particularly preferred sealant is gel sealant. The gel may, for example, comprise silicone gel, urea gel, urethane gel, thermoplastic gel, or any suitable gel or gelloid sealant. The most preferred type of gel sealant comprises a liquid-extended polymer composition. The polymer composition of the gel sealant may, for example, comprise an elastomer, or a block copolymer having relatively hard blocks and relatively elastomeric blocks. Examples of such copolymers include styrene-diene block copolymers, for example styrene-butadiene or styrene-isoprene diblock or triblock copolymers e.g. as disclosed in International Patent Application WO 88/00603. Preferably, however, the polymer composition comprises one or more styrene-ethylene-propylene-styrene block copolymers. The extender liquids employed in the gel preferably comprise oils. The oils may be hydrocarbon oils, for example paraffinic or napthenic oils, synthetic oils for example polybutene or polypropene oils, or mixtures thereof. The preferred oils are mixtures of non-aromatic paraffins and naphthenic hydrocarbon oils. The gel may contain additives, e.g. such as moisture scavengers (e.g. Benzoyl chloride), antioxidants, pigments and fungicides.
Other sealants which may be used include polymeric (e.g. silicone) foam materials, elastomeric materials, e.g. natural or synthetic rubber, or mastics. These other sealants are, however, generally less preferred (at least at the present time) than gel sealants.
The sealant (preferably gel sealant) preferably has a hardness at room temperature as determined using a Stevens-Volland Texture Analyser of greater than 45 g, particularly greater than 50 g, especially greater than 55 g, e.g. between 55 g and 60 g. It preferably has a stress-relaxation of less than 12%, particularly less than 10% and especially less than 8%. Ultimate elongation, also at room temperature, is preferably greater than 100%, more preferably greater than 600%, especially greater than 1000%, particularly greater than 1400%, as determined according to ASTM D638. Tensile modulus at 100% strain is preferably at least 1.8 MPa more preferably at least 2.2 MPa. In general compression set is preferably less than 35%, more preferably less than 25%, especially less than 15%. Preferably, the sealant has a cone penetration as measured by ASTM D217 of at least 80 (10
−1
mm), more preferably at least 100 (10
−1
mm), even more preferably at least 200 (10
−1
mm) and preferably no greater than 400 (10
−1
mm), especially no greater than 350 (10
−1
mm).
The carrier and the object or housing preferably have attachment means comprising mutually interlocking parts. The attachment means may, for example, be one or more projections and/or recesses. The mutually interlocking parts may advantageously comprise snap-fit parts. Preferably, the sealing member may be attached to the object or housing merely by pushing it into the cavity until the snap-fit parts mutually interlock. The carrier, or at least the attachment means thereof, is/are preferably resiliently deformable.
The carrier is preferably made from a plastics material. Preferred materials include polyolefins, e.g. polyethylene or polypropylene.
The carrier may advantageously comprise a backing or other support of the sealing member, to which the sealant is attached. The carrier may include, for example, one or more protrusions or other gripping members which extend into, and anchor the carrier to, the sealant. The carrier is preferably
Dams Francis
Roosen Dirk
Knight Anthony
Myers Bigel & Sibley & Sajovec
Peavey Enoch E
LandOfFree
Sealed article does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Sealed article, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sealed article will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2492439