Method for scavenging moisture in polyisocyanates and...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S349000, C524S350000, C524S171000, C252S194000

Reexamination Certificate

active

06291577

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to moisture scavenging compositions, and more particularly to moisture scavenging compositions useful for scavenging moisture in substantially anhydrous and dilute polyisocyanates, particularly polyisocyanate oligomers and prepolymers, to be used to prepare thermosetting polyurethane coatings, films and the like therefrom. The polyisocyanates can also be used to form adhesives, sealants and elastomers.
BACKGROUND OF THE INVENTION
Moisture-curable thermosetting polyurethanes are widely known as protective and decorative coatings or films in a broad range of applications, such as for example, coatings or films for walls, buildings, machinery, vehicles, equipment and other surfaces in need of a protective coating. These moisture-curable polyurethanes are prepared from polyisocyanate oligomers or prepolymers.
Moisture-curing polyurethane coating systems include a polyisocyanate oligomer component which reacts with atmospheric water at room temperature to form useful films. These systems also include pigments, organic solvents, and a variety of adjuvant components, e.g., surface active agents, dispersants, diluents, and fillers. This type of coating is one of the finest coatings available that can be produced without the application of heat or other external sources of energy. These systems are very useful for objects that cannot be heat-cured, such as buildings, large machinery, airplanes, ships and vehicles.
Two component thermosetting polyurethanes are widely used in protective coatings or films in a broad range of applications, such as for example, coatings for automotive machinery, equipment, and other surfaces in need of a protective coating. These room temperature-curable polyurethanes are prepared from polyisocyantes.
Two component polyurethane coating systems include a polyisocyanate component which reacts with polyol resin, such as an acrylic polyol or polyester polyol, to form useful films. The system also includes pigments, organic solvents, and a variety of adjuvant components, e.g., surface active agents, dispersants, diluents, and fillers. This type of coating is one of the finest coatings available that can be produced without the application of heat or other external sources of energy. They are very useful for objects that cannot be heat-cured, such as large machinery, airplanes, ships and vehicles.
Since the polyisocyanate component reacts with even trace amounts of moisture, extreme care must be taken so that the polyisocyanate does not contact water until they are applied to a surface to be coated. Water is, however, unintentionally and unavoidably introduced into the formulation process in the form of dissolved water in solvents, adsorbed and absorbed water in fillers and pigments, and atmospheric moisture. Subsequent reaction of the water with the polyisocyante component of the system results in an irreversible reaction which will produce carbamic acid. The carbamic acid is unstable at room temperature and decomposes into carbon dioxide and a primary amine. The primary amine is reactive with the polyisocyanate producing a urea and resulting in a turbid formulation or precipitation of crystals of polyurea. The polyisocyanate formulation then becomes generally unusable for forming thermosetting polyurethanes possessing excellent coating properties.
A number of moisture scavengers have been suggested or marketed for moisture scavenging in such polyisocyanate oligomer or prepolymer formulations. Among the many commercially available moisture scavengers are monomeric monoisocyanates such as p-toluene sulfonyl isocyanate, a Zoldine MS Plus product based on oxazalidone, an Incozol 2 based oxazolane, an orthoformate based additive known as OF, and trimethyl orthoformate (TMOF) and trimethyl orthoacetate (TMOC), moisture scavengers. The monomeric isocyanates are generally toxic and considered to be a health hazard. Moreover, on addition to the polyisocyanate oligomer, it causes yellowing when stored over time. The MS Plus product also causes yellowing over time when put into contact with polyisocyanate oligomers or prepolymers. Incozol 2 reacts with water to form an aminoalcohol and 2-ethyl hexanal. The aminoalcohol will react with the polyisocyanate as a chain extender without forming the desired product. The orthoformates and orthoacetates also undesirably readily react with water. The products will form precipitates or cause turbidity in the polyisocyanate solutions.
There is therefore a need for a non-toxic moisture scavenger composition which will effectively and safely isolate water from the polyisocyanates formulations and to do so without causing the aforesaid undesirable occurrences and without adversely effecting the performance and properties of the resulting thermosetting polyurethanes produced from the polyisocyanates.
SUMMARY OF THE INVENTION
It has been discovered in accordance with this invention that moisture can be scavenged from polyisocyanates formulations by admixing with the polyisocyanate a moisture scavenging effective amount of:
(a) a t-butylated hydroxytoluene selected from the group consisting of 2,6-ditertiarybutyl hydroxytoluene and 2-tertiarybutyl hydroxytoluene, and
(b) an alkyl ester of toluenesulfonic acid comprising at least 90% para alkyl ester, optionally in at least one organic solvent.
The invention further comprises a polyisocyanate formulation suitable for use in preparing thermosetting polyurethanes therefrom in which the moisture scavenging effective amount of the t-butylated hydroxytoluene and alkyl ester of toluenesulfonic acid comprises from about 0.3 to about 0.7 weight % based on the total weight of the polyisocyanate formulation.
Another aspect of this invention provides a moisture scavenging composition for use in scavenging moisture in a polyisocyanate formulation useful for preparing thermosetting polyurethanes therefrom, the moisture scavenging composition comprising:
(a) a t-butylated hydroxytoluene selected from the group consisting of 2,6-ditertiarybutyl hydroxytoluene and 2-tertiarybutyl hydroxytoluene, and
(b) an alkyl ester of toluenesulfonic acid comprising at least 90% para alkyl ester,
(c) optionally, at least one organic solvent,
wherein the weight ratio of alkyl ester of toluenesulfonic acid to t-butylated hydroxytoluene is in the range of from about 2:1 to about 10:1.
By this invention, the shelf life of the polyisocyanate is improved.


REFERENCES:
patent: 3715381 (1973-02-01), Spaunburgh et al.
patent: 4614786 (1986-09-01), Goel et al.
patent: 4690953 (1987-09-01), Orr et al.
patent: 5095069 (1992-03-01), Ambrose et al.
patent: 5096993 (1992-03-01), Smith et al.
patent: 5223174 (1993-06-01), Chou et al.
patent: 5264148 (1993-11-01), Chou et al.
patent: 5328635 (1994-07-01), Chou et al.
patent: 5354834 (1994-10-01), Yoshida et al.
patent: 5410011 (1995-04-01), Konishi et al.
patent: 6008462 (1999-12-01), Soltwedel

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for scavenging moisture in polyisocyanates and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for scavenging moisture in polyisocyanates and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for scavenging moisture in polyisocyanates and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2490684

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.