Enhancement of microbial colonisation of the...

Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Intentional mixture of two or more micro-organisms – cells,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S093400, C424S093450, 57, 57, 57

Reexamination Certificate

active

06221350

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to methods of enhancing the affect of nutritional compositions, particularly compositions for the delivery and maintenance of probiotic microorganisms to and in the gastrointestinal tract, especially the large bowel of animals including humans. As used in this specification, probiotics or probiotic microorganisms are a live microbial feed supplement which beneficially affects the host animal by improving its intestinal microbial balance. This is the definition provided by R. Fuller (AFRC Institute of Food Research, Reading Laboratory, UK) in—Journal of Applied Bacteriology, 1989. 66, pp.365-378. “Probiotics in Man and Animals—A Review”.
BACKGROUND ART
It is the contention of many scientists that the health and well being of people can be positively or negatively influenced by the microorganisms which inhabit the gastrointestinal tract, and in particular, the large bowel. These microorganisms, through the production of toxins, metabolic byproducts, short chain fatty acids and the like affect the physiological condition and health of the host.
The constitution and quantity of the gut microflora can be influenced by conditions or stress induced by disease, life style, travel, and other factors. If microorganisms which positively affect the health and well being of the individual can be encouraged to populate the large bowel, this should improve the physiological well being of that individual.
The introduction of beneficial microorganisms, or probiotics, is normally accomplished by the ingestion of the microorganisms in drinks, yoghurts, capsules, and other forms in such a way that the organism arrives in a viable condition in the large bowel. It has been demonstrated by Englyst H. N. et al (1987) “Polysaccharides breakdown by mixed populations of human faecal bacteria”, FEMS Microbiology Ecol 95: 163-71, that the bacterial fermentation of resistant starch in the large bowel produces elevated levels of short chain fatty acids, particularly beneficial types such as propionate and butyrate.
The present inventors have realised that it would be desirable to not only deliver probiotic microorganisms to the large bowel but also to provide a medium that would function to promote the growth of the microorganisms when they reach the large bowel. Surprisingly, it has been found that modified or unmodified resistant starches may function both as a means to transport the probiotic microorganisms to the large bowel and as a growth medium for the microorganism delivered to the target region of the large bowel. International publication number WO 96/08261 discloses such probiotic compositions and the content of which is incorporated into this specification for the purposes of convenient cross-reference.
It would be advantageous to further increase the numbers and/or survival in the gastrointestinal tract of probiotic microoganisms provided to an animal or human so as to enhance the beneficial effect of these compositions. The present inventors have now developed improved probiotic compositions and methods of delivering probiotic microorganisms to the gastrointestinal tract of animals including humans.
DISCLOSURE OF INVENTION
In a first aspect, the present invention consists in a probiotic composition including one or more probiotic microorganisms, a carrier which will function to transport the one or more probiotic microorganisms to the large bowel or other regions of the gastrointestinal tract, the carrier comprising a modified or unmodified resistant starch or mixtures thereof, which carrier acts as a growth or maintenance medium for microorganisms in the large bowel or other regions of the gastrointestinal tract, and an oligosaccharide.
In a second aspect, the present invention consists in a method of increasing the number of probiotic or resident microorganisms in the gastrointestinal tract of an animal, the method comprising providing to the animal a probiotic composition including one or more probiotic microorganisms, a carrier which will function to transport the one or more probiotic microorganisms to the large bowel or other regions of the gastrointestinal tract, the carrier comprising a modified or unmodified resistant starch or mixtures thereof, which carrier acts as a growth or maintenance medium for microorganisms in the large bowel or other regions of the gastrointestinal tract, and an oligosaccharide.
It will be appreciated that the present invention is suitable for any animal which can benefit from probiotic treatment or administration. The present invention is particularly suitable for use in humans.
In one broad aspect, the resistant starch functions as a carrier to transport the probiotic microorganisms to the large bowel. The introduction of those microorganisms into the large bowel is beneficial as previously explained. In addition, the resistant starch, when present in the large bowel, will function as a nutritional source for microorganisms already present in the large bowel. The addition of an oligosaccharide to probiotic compositions has the surprising effect of causing an increase and persistence in the number of probiotic microorganisms in the gastrointestinal tract.
Some probiotic microorganisms may be selected such that they are able to utilise the resistant starch as a nutritional source. Thus the resistant starch will function both as a carrier and a nutritional source for those probiotic microorganisms.
There are a variety of probiotic microorganisms which are suitable for use in this invention including yeasts such as Saccharomyces, and bacteria such as the genera Bifidobacterium, Bacteroides, Clostridium, Fusobacterium, Propionibacterium, Streptococcus, Enterococcus, Lactococcus, Staphylococcus, Peptostreptococcus and Lactobacillus. The invention is not, however, limited to these particular microorganisms. The person skilled in the art would understand and recognise those microorganisms which may be included in the compositions of the invention.
In a preferred form, the probiotic microorganism is Bifidobacterium.
Typical concentration range of probiotic microorganisms administered is 10
3
to 10
13
cells per day. Usually, about 10
8
cells per day are used in probiotic administration.
When administering probiotic compositions, typical consumption rates are about 0.1 to 10 g per kg body weight. Consumption of around 1 g per kg body weight has been found to be suitable.
Oligosaccharides suitable for the present invention may include any oligosaccharides available for consumption. Commercial oligosaccharides presently available include fructo-, galacto-, malto-, isomalto-, gentio-, xylo-, palatinose-, soybean- (includes raffinose and stachyose), chito-, agaro-, neoagaro-, &agr;-gluco-, &bgr;-gluco-, cyclo-inulo-, glycosylsucrose, lactulose, lactosucrose and xylsucrose. It will be appreciated by one skilled in the art, however, that other oligosaccharides would also be suitable for inclusion in the composition of the present invention.
One preferred oligosaccharide suitable for the present invention is fructo-oligosaccharide (Raftilose). It will be appreciated, however, that although this particular oligosaccharide was found to be suitable in experiments carried out by the present inventors, other oligosaccharides would also be expected to have similar beneficial effects in probiotic compositions.
The oligosaccharide can be used in the composition in concentrations of about 0.01 to 10% (w/w). Preferably the concentration of oligosaccharide is about 0.05 to 5%. It has been found that between 0.1% to 1% (w/w) has the desired beneficial effect in the compositions according to the present invention.
One important effect of the present invention is that the combination of probiotic microorganism and resistant starch with the oligosaccharide results in a synergistic enhancement of the beneficial effect of delivered microorganisms when compared with probiotic composition without the oligosaccharide. This result is surprising and unexpected and therefore the present invention provides an important improvement over current prob

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Enhancement of microbial colonisation of the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Enhancement of microbial colonisation of the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Enhancement of microbial colonisation of the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2490107

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.