Method and apparatus for programmable adjustment of bus...

Miscellaneous active electrical nonlinear devices – circuits – and – Signal converting – shaping – or generating – Current driver

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C327S261000, C326S086000, C326S090000, C326S082000

Reexamination Certificate

active

06275077

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to computer systems, and more particularly to computer interconnection sub-systems commonly called buses, and to techniques for establishing bus operating parameters.
BACKGROUND OF THE INVENTION
As is known in the art, bus adapters and other devices are connected to a bus through bus interfaces. A bus interface is typically specifically designed for a particular type of bus, and is responsible for complying with the signaling requirements of the bus, sometimes called its “bus protocol” including its electrical, physical and logical characteristics for reliable bus transfers. The bus interface generally includes bus drivers and bus receivers to send and receive, respectively, signals over the bus in accordance with the bus protocol. Essentially, each device connected to the bus has a separate instance of a bus interface for each line of the bus, each including a driver for driving that line and a receiver for sensing and resolving voltages on that line into logic states. Bus protocols are typically specified by manufacturers and often by standards-making organizations. Bus adapters include bus interfaces for each of the buses to which they are connected.
Computer system architecture has advanced dramatically in performance and complexity. In terms of performance, computer systems can achieve higher clock speeds with increased bus widths and lower bus operating voltages. Increased bus clock speeds, measured usually in megaHertz (MHz) can allow data to be transferred faster over the computer system's buses, thereby allowing computer applications to run faster. The size of a bus, known as its width, corresponds generally to the number of data lines in the bus and determines how much data can be transmitted in parallel at the same time; thus, wider buses typically transfer data faster. Lower bus operating voltages can advantageously also reduce power consumption, which is important, for example, in miniaturization of integrated circuits and in mobile computing for extending battery operating times. Unfortunately, lower operating voltages can make bus signals more susceptible to signaling errors due to lower signal-to-noise ratios and to signal distortion. Such noise and signal distortion can make it difficult for bus receivers to differentiate correctly between data logic states, thus potentially yielding erroneous data.
Transient and other non-predictable errors in the received data signals can also arise from other causes as well, and often have a deleterious impact on computer system performance. Such errors can arise, for example, from degradation over time of bus drivers and receivers in bus interfaces. Bus errors can also arise due to non-compatibility of add-on components such as adapter cards that are integrated into the computer system after installation at a customer site, and connected to one of the computer's buses, e.g., through “plug and play” operation. Where such adapter cards malfunction or simply exhibit operating parameters unanticipated by the original computer manufacturer, data transfer errors can arise on the bus to which they are connected. Such bus errors can result in lost or corrupted data or hanging of the bus protocol so as to prevent completion of a bus transaction. In extreme cases, bus errors can cause system crashes.
Accordingly, while current computer systems perform reasonably well, it would be desirable to improve bus operating and signaling parameters so as to avoid or at least lessen difficulties with respect to bus transfer errors and otherwise to improve bus performance. Such bus operating and signaling parameters are determined, at least in part, by signal characteristics in bus drivers and bus receivers.
Examples of signal characteristics include rise time and fall time of the driver output. “Rise time” refers to the time period between the point at which a driver output starts transitioning from a low voltage state to a high voltage state and the point at which this signal reaches the high voltage state. On the other hand, “fall time” refers to the time period between the point at which a signal starts transitioning from a high voltage state to a low voltage state and the point at which this signal reaches the low voltage state. The rise time characteristic is important to computer system operation because rise time is related to the maximum bus speed, one of the more important bus operating parameters.
Rise time is dictated typically by the high frequency characteristics of the output transistor of the driver. When developing operating specifications for a bus, a computer system designer may determine the shortest typical rise time that the output transistor of the driver will achieve, and then specify the maximum bus speed for all buses using that type of driver based on that lowest rise time. Accordingly, rise time or fall time performance by a driver often is not controlled specifically; rather, the natural rise time and fall time characteristics of the output transistor circuit in the driver are accepted and are used to dictate overall system bus performance. Some designs, however, attempt to control rise time. One approach used in the prior art to control rise time characteristics of the output transistor of the driver is to design into the driver a relatively small resistance in series with an input circuit of the output transistor. The input circuit with the added resistance exhibits a higher resistance-capacitance time constant than a similar circuit without that resistance, which has the effect of slowing down the rise time. One problem with this approach, however, is that such resistances are generally provided as internally integrated devices within the circuit. The tolerance on such a resistance, as currently achievable by standard semiconductor processing techniques, is relatively poor, typically on the order of about 15 percent. This relatively poor tolerance provides too much variation in the rise time characteristics of the transistor to be effective in controlling that parameter.
U.S. Pat. No. 5,657,456 issued to Gist and Coyle on Aug. 12, 1997, entitled “Semiconductor Process Power Supply Voltage and Temperature Compensated System Bus Driver Rise and Fall Time,” and incorporated herein by reference, discloses a driver circuit having an input terminal fed by a logic signal and an output terminal including means for setting a rise time for a signal driven from the driver. An external resistor determines the rise time. It would be possible to adjust rise and fall times in that patent by manually swapping out the external resistor for one of a different resistance value, that is, manually disconnecting the external resistor and manually connecting a replacement having a different resistance value.
While potentially effective in controlling rise times, the technique disclosed in that patent has a number of drawbacks. For example, it requires a trained technician to perform modifications to the printed circuit board on which the external resistor is mounted. This procedure may require removal of the computer system from a customer's facility so that the work can be performed at a repair location. There is an attendant risk that the procedure may damage the board or other mounted components. Moreover, such repair may be time consuming and expensive, and typically would require an inventory of replacement resistors. Customers often rely on their computer systems to such an extent that computer “down time” associated with such repair is often unacceptable.
Another example of an important signal characteristic is the threshold voltage at the receiver, which refers to the voltage level between the line high voltage and the line low voltage, above which the receiver resolves the signal into one logic state, and below which into the other logic state. The threshold voltage is often slightly different for each logic state, with the difference between the two threshold voltage levels being an area of uncertainty or indeterminacy. The values of these two threshold v

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for programmable adjustment of bus... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for programmable adjustment of bus..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for programmable adjustment of bus... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2488851

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.