Process for the preparation of hydroxyadamantanone derivatives

Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C568S351000

Reexamination Certificate

active

06229050

ABSTRACT:

This application is the national phase under 35 U.S.C. §371 of PCT International Application No. PCT/JP00/00346 which has an International filing date of Jan. 25, 2000, which designated the United States of America.
TECHNICAL FIELD
The present invention relates to a process for producing a hydroxyadamantanone derivative which is useful as a monomer or a material thereof for use in photosensitive resins and other functional polymers.
BACKGROUND ART
Alicyclic compounds each having a ring combined with a hydroxyl group are used, for example, as monomers or materials thereof for use in photosensitive resins and other functional polymers, and as intermediates of pharmaceuticals. Likewise, 5-hydroxy-2-adamantanone having an adamantane ring combined with a hydroxyl group is expected to be used as a monomer or a material thereof for use in resist resins, taking advantage of its unique cyclic structure.
Japanese Unexamined Patent Application Publication No. 9-327626 discloses a process for oxidizing adamantane with molecular oxygen by catalysis of a specific imide compound or of the imide compound and a metallic compound (refer to examples). However, the yield of 5-hydroxy-2-adamantanone having a hydroxyl group and an oxo group on an adamantane ring is very low according to this process, although adamantanol and adamantanepolyols can be obtained in good yields.
DISCLOSURE OF INVENTION
Accordingly, an object of the present invention is to provide a process for obtaining 5-hydroxy-2-adamantanone in a good yield.
After intensive investigations to achieve the above object, the present inventors found that a corresponding 5-hydroxy-2-adamantanone derivative can be produced in a good yield by oxidizing a 2-adamantanone derivative with oxygen in the presence of a catalyst including a combination of an imide compound having a specific structure and specific two metallic compounds. The present invention has been accomplished based on these findings.
Specifically, the present invention provides a process for producing a hydroxyadamantanone derivative. This process includes the step of allowing a 2-adamantanone derivative represented by the following formula (1):
wherein each of R
a
, R
b
, and R
c
is, identical to or different from one another, a hydrogen atom, a halogen atom, an alkyl group, a hydroxyl group which may be protected by a protective group, a hydroxymethyl group which may be protected by a protective group, an amino group which may be protected by a protective group, a carboxyl group which may be protected by a protective group, or a nitro group, and of carbon atoms constituting an adamantane skeleton, the other carbon atoms than carbon atoms at bridgehead positions and at a bonding position of an oxo group may have a substituent, to react with oxygen in the presence of an imide compound represented by the following formula (2):
wherein each of R
1
and R
2
is, identical to or different from each other, a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a cycloalkyl group, a hydroxyl group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, or an acyl group, where R
1
and R
2
may be combined to form a double bond or an aromatic or non-aromatic ring; X is an oxygen atom or a hydroxyl group; and one or two of N-substituted cyclic imido group indicated in the formula (2) may be further formed on the R
1
, R
2
, or on the double bond or aromatic or non-aromatic ring formed together by R
1
and R
2
, a vanadium compound, and a manganese compound to yield a 5-hydroxy-2-adamantanone derivative represented by the following formula (3):
wherein R
a
, R
b
, and R
c
have the same meanings as defined above.
In this connection, the term “group protected by a protective group” used in the present description means a group which can be derived from a group to be protected (a free functional group) and contains the major component of the group to be protected. The compound represented by the formula (1) may be referred to as “substrate”.
BEST MODE FOR CARRYING OUT THE INVENTION
2-Adamantanone Derivative
In the formula (1), the halogen atom in R
a
, R
b
, and R
c
includes, for example, fluorine, chlorine, and bromine atoms. The alkyl group includes, but is not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, octyl, and decyl groups, and other alkyl groups having about 1 to 10 carbon atoms, preferably about 1 to 6 carbon atoms, and more preferably about 1 to 4 carbon atoms. Typically preferred alkyl groups are methyl group and ethyl group, of which methyl group is especially preferred.
The protective groups for hydroxyl group and hydroxymethyl group include conventional protective groups. Such protective groups include, but are not limited to, alkyl groups (e.g., methyl, and t-butyl groups, and other C
1
-C
4
alkyl groups), alkenyl groups (e.g., allyl group), cycloalkyl groups (e.g., cyclohexyl group), aryl groups (e.g., 2,4-dinitrophenyl group), aralkyl groups (e.g., benzyl, 2,6-dichlorobenzyl, 3-bromobenzyl, 2-nitrobenzyl, and triphenylmethyl groups), substituted methyl groups (e.g., methoxymethyl, methylthiomethyl, benzyloxymethyl, t-butoxymethyl, 2-methoxyethoxymethyl, 2,2,2-trichloroethoxymethyl, bis(2-chloroethoxy)methyl, and 2-(trimethylsilyl)ethoxymethyl groups), substituted ethyl groups (e.g., 1-ethoxyethyl, 1-methyl-1-methoxyethyl, 1-isopropoxyethyl, and 2,2,2-trichloroethyl groups), tetrahydropyranyl group, tetrahydrofuranyl group, acyl groups (e.g., formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, and pivaloyl groups, and other C
1
-C
6
aliphatic acyl groups; acetoacetyl group; benzoyl, and naphthoyl groups, and other aromatic acyl groups), alkoxycarbonyl groups (e.g., methoxycarbonyl, ethoxycarbonyl, and t-butoxycarbonyl groups, and other C
1
-C
4
-alkoxy-carbonyl groups), aralkyloxycarbonyl groups (e.g., benzyloxycarbonyl group and p-methoxybenzyloxycarbonyl group), substituted or unsubstituted carbamoyl groups (e.g., carbamoyl, methylcarbamoyl, and phenylcarbamoyl groups), dialkylphosphinothioyl groups (e.g., dimethylphosphinothioyl group), diarylphosphinothioyl groups (e.g., diphenylphosphinothioyl group), and substituted silyl groups (e.g., trimethylsilyl, t-butyldimethylsilyl, tribenzylsilyl, and triphenylsilyl groups). When the molecule to be protected has two or more hydroxyl groups (inclusive of hydroxymethyl groups), the protective groups also include divalent hydrocarbon groups (e.g., methylene, ethylidene, isopropylidene, cyclopentylidene, cyclohexylidene, and benzylidene groups) which may have a substituent. Preferred protective groups for hydroxyl group or the like include, for example, C
1
-C
4
alkyl groups, substituted methyl groups, substituted ethyl groups, acyl groups, C
1
-C
4
alkoxy-carbonyl groups, substituted or unsubstituted carbamoyl groups, and divalent hydrocarbon groups which may have a substituent.
Protective groups for amino group include the aforementioned alkyl groups, aralkyl groups, acyl groups, alkoxycarbonyl groups, aralkyloxycarbonyl groups, dialkylphosphinothioyl groups, and diarylphoshinothioyl groups mentioned as the protective groups for hydroxyl group. Preferred protective groups for amino group are, for example, C
1
-C
4
alkyl groups, C
2
-C
6
aliphatic acyl groups, aromatic acyl groups, and C
1
-C
4
alkoxy-carbonyl groups.
Illustrative protective groups for carboxyl group include, but are not limited to, alkoxy groups (e.g., methoxy, ethoxy, butoxy, and other C
1
-C
6
alkoxy groups), cycloalkyloxy groups, aryloxy groups (e.g., phenoxy group), aralkyloxy groups (e.g., benzyloxy group), trialkylsilyloxy groups (e.g., trimethylsilyloxy group), amino groups which may have a substituent (e.g., amino group; methylamino group, dimethylamino group, and other mono- or di-C
1
-C
6
alkylamino groups), hydrazino group, alkoxycarbonylhydrazino groups, and aralkyloxycarbonylhydrazino groups. Preferred examples of the protective groups for carboxyl group are C
1
-C
6
alkoxy groups (especially, C
1
-C
4
alkoxy groups), and mono- or di-C
1
-C
6
alkylamino groups (

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the preparation of hydroxyadamantanone derivatives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the preparation of hydroxyadamantanone derivatives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the preparation of hydroxyadamantanone derivatives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2488039

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.