Device for repairing ruptured Achilles tendon

Surgery – Instruments – Suture – ligature – elastic band or clip applier

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06200327

ABSTRACT:

The present invention relates to apparatus used during a surgical operation to repair a broken Achilles tendon, to take hold of the end of the tendon that is attached to the triceps muscle and that is situated within its peritendinous sheath. The apparatus can also be used to take hold of other tendons in the human body.
The Achilles tendon can break following accidental injury or degeneration due to age. The tendon usually breaks transversely about 4 cm above its insertion on the calcaneum, and by contraction of the triceps it rises to a greater or lesser extent inside its peritendinous sheath.
The surgical operation of repairing the tendon consists in taking hold of the top end of the tendon to pull it down so as to bring it end to end with the bottom end which is attached to the calcaneum, and then to suture them together. This operation must therefore restore the original length of the tendon, must minimize adhesion between the tendon and the tissue surrounding it, and must leave as small a scar as possible.
Various techniques are used for taking hold of the tendon, which techniques are more or less invasive, depending on the hospital concerned. One invasive technique consists in making an incision that is long, about 15 cm long, through the posterior cutaneous zone of the leg along the triceps muscle and then along the tendon to the calcaneum in order to find the two ends of the tendon and bring them together. Nevertheless, that technique is disadvantageous because of the great length of the incision through cutaneous tissue and through the peritendon, which serves to vascularize the tendon itself. In addition, this zone has vascularization which is critical and which is highly stressed by rubbing against the heels of shoes.
A technique that is less invasive is described in the article “A combined open and percutaneous technique for repair of tendo achillis” published in January 1995 in “The Journal of Bone and Joint Surgery”. In that technique, a small incision, that is 2 cm to 3 cm long, is initially made at the end of the piece of tendon which is attached to the calcaneum. Thereafter, two relatively rigid bent rods are inserted into the peritendinous sheath to place the loop-forming ends thereof on either side of the end of the tendon that is attached to the triceps. A long needle with a thread is then passed respectively through the adjacent skin, the loop of the first rod, the tendon, the loop of the second rod and then out through the skin on the opposite side. Once the thread is in place, the rods are removed, thereby bringing with them the ends of the thread that is engaged in the tendon out through the incision. This procedure is repeated one or two times at different locations on the tendon. It is then possible to pull uniformly on three threads so as to bring the top end of the tendon easily into place and suture it to the bottom end. If so desired, the traction threads can themselves be connected laterally to other threads engaged correspondingly in the bottom end of the tendon.
Nevertheless, the major difficulty of that technique lies in the fact that it is difficult to find the orifice in the top loop of one and then the other bent rod when they are under the skin and when it is desired to insert the needle therethrough.
When working blindly in that way, steps are made to recognize the respective positions of the loops by touch, but that is lengthy and difficult. In addition, in the end, it is never certain whether the needle has indeed passed through the loops until the rods have been pulled back out from the sheath. The operation can then take a long time since it is usually necessary to implant at least six threads. This is prejudicial because it prolongs the duration of anesthesia.
The object of the present invention is to provide apparatus comprising an instrument and an associated needle that considerably facilitate the surgical operation of repairing a tendon, in particular the Achilles tendon by the above-described subcutaneous technique that is not very invasive. As much as possible, the apparatus should avoid any risk of additional injury, should be relatively simple in design so as to be easy to implement, and should be inexpensive to make. The apparatus should also make it possible significantly to reduce the mean length of time required to perform such an operation, while nevertheless making it possible to suture the tendon properly after it has been used.
These objects are achieved by apparatus comprising both an instrument itself comprising a pair of inner prongs designed to be inserted in the sheath on either side of the tendon, and an external handle including an element situated in the same plane as the pair of inner prongs and in register therewith, the element and the pair of inner prongs each presenting at least one respective orifice on a common alignment passing through the tendon; and a needle suitable for being inserted in the orifice of the element to be guided so as to pass through the orifices of the inner prongs.
Thus, after the pair of inner prongs have been inserted in the peritendinous sheath and after the prongs have been positioned on either side of the tendon, which is easily confirmed by touch, the orifice of the handle element makes it possible to guide the needle in a precise direction enabling it to pass without fail, and even though it cannot be seen, through the tendon which, in addition, is held by the prongs while it is being pierced. The operation of threading a thread through the tendon thus becomes particularly rapid, thereby reducing he duration of the surgical operation.
Preferably, the handle element and the pair of inner prongs respectively present the same arrays of orifices in alignment, with the mouths of the orifices in the prongs being chamfered, if so desired.
This characteristic makes it possible advantageously to increase the chances of success in passing the needle rapidly through the tendon, even when the pair of limbs is not exactly in alignment with the tendon. In addition, the array of orifices makes it possible to pass a plurality of threads through before withdrawing the instrument. The chamfered mouths of the orifices make it easy to accommodate small deflections of the needle away from the alignment of the orifices.
Preferably, the two inner prongs form between them an angle lying in the range 2° to 8°, and preferably equal to 4°, the angle being open in the insertion direction. This characteristic enables the pair of prongs to fit closely around the conical outline of the end of the tendon without running the risk of pushing it back further along the sheath.
Preferably, the inner prongs of the instrument are of rectangular cross-section that is flattened with rounded corners, or of flattened oval section, and if so desired the long side of the section tapers towards the end. The internal prongs thus slide better between the tendon and its peritendinous sheath while the instrument is being put into place.
Preferably, the spacing between the two inner prongs is adjustable. The instrument can then be adapted to the various morphologies of patients.
Advantageously, the handle element comprises two outer prongs respectively situated on either side of the pair of inner prongs and lying in the same plane. The instrument can then be used comfortably both by a right-handed surgeon and by a left-handed surgeon when taking hold of the instrument by means of one of its outer prongs.
Under such circumstances, the instrument is preferably constituted by two substantially U-shaped parts that are assembled together side by side by a mechanism enabling the spacing between the parts to be adjusted, the adjacent prongs of the U-shapes of the two parts together forming the inner pair of prongs, with the remoter prongs forming the handle. The design of the instrument turns out to be particularly simple and easy to make. Better still, the two U-shaped parts are symmetrical about an orthogonal plane, and the webs joining together the prongs of the U-shaped parts are arcuate. The even further simplified appearance

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for repairing ruptured Achilles tendon does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for repairing ruptured Achilles tendon, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for repairing ruptured Achilles tendon will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2486110

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.