Nutrient formulation and process for enhancing the health,...

Food or edible material: processes – compositions – and products – Treatment of live animal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S053000, C426S623000, C426S635000, C426S807000

Reexamination Certificate

active

06210718

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention is directed to a high moisture material for providing nutrients, drugs, vitamins, minerals, bile salts, surfactants, probiotics, enzymes, peptides, hormones, prostaglandins, antioxidants, living cells, and immunoactive agents to poultry and other animals, and more particularly, a high moisture material and process which may be used to improve the health and enhance the livability, cumulative weight gain and feed conversion efficiency of poultry and other animals.
For economic reasons, the management of chick hatching in commercial facilities places high importance on percent chicks hatched of eggs set. To achieve hatch rates of 90%, early-hatching birds are often left in the hatch incubator for a period of time to allow the later-hatching chicks to emerge and dry. By the time the chicks are removed from the incubator tray, therefore, they will range in age from several hours up to about 2 days in age (as measured from hatching for each bird). This period is referred to as the post-hatch holding period.
After the chicks are removed from the incubator trays in a commercial hatchery, they are processed (inoculated and sexed) and then placed in boxes commonly referred to as chick boxes for shipping to the production farm. The processing period typically requires several hours and the chicks may reside in the chick boxes for several more hours before transit to the production farm actually begins.
Commercial hatcheries for poultry typically provide chicks for a number of production farms, often over a wide geographical area. Typically, feed and water are not provided until the birds reach the production farm and, as a result, the birds may go several days before feed and water are provided. The presence of the lipid-rich residual yolk sac and reserves of lipid in the liver, however, ensure that the minimal nutritional needs of hatchling birds are met (Freeman et al.,
Development of the Avian Embryo,
London, Chapman and Hall, 1974). Thus, a period of inanition after hatching is normal in birds and does not necessarily threaten their survival (Entenman et al., The Lipid Content of Blood, Liver, and Yolk Sac of the Newly Hatched Chick and the Changes That Occur in These Tissues During the First Month of Life, J. Biol Chem., Vol. 133, pp. 231-241 (1940); Vanheel et al., Resorption of Yolk Lipids by the Pigeon Embryo, Comp. Biochem. Physiol., Vol. 68A pp. 641-646 (1981); Phelps et al., The Posthatch Physiology of the Turkey Poult-III. Yolk Depletion and Serum Metabolites, Comp. Biochem. Physiol., Vol. 87A, No. 2 pp. 409-415 (1987); Noble et al., Lipid Changes in the Residual Yolk and Liver of the Chick Immediately after Hatching, Biol Neonate, Vol. 56, pp. 228-236 (1989); Chamblee et al, Yolk Sac Absorption and Initiation of Growth in Broilers, Poultry Science, Vol. 72, pp. 1811-1816 (1992)). This does not mean, however, that using yolk residue as the single nutrient source in hatchlings will provide optimum subsequent livability, disease resistance, or gain and feed efficiency. The delayed placement has been shown to reduce subsequent livability (Kingston, Some Hatchery Factors Involved in Early Chick Mortality, Australian Veterinary Jour., Vol. 55, pp. 418-421 (1979); Fanguy et al., Effect of Delayed Placement on Mortality and Growth Performance of Commercial Broilers, Poultry Science, Vol. 59, pp. 1215-1220 (1980)), disease resistance (Wyatt et al., Influence of Hatcher Holding Times on Several Physiological Parameters Associated With the Immune System of Chickens, Poultry Science, Vol. 65, pp. 2156-2164 (1986); Casteel et al., The Influence of Extended Posthatch Holding Time and Placement Density on Broiler Performance, Poultry Science, Vol. 73, pp. 1679-1684 (1994)) and growth performance (Hager et al., Education and Production Posthatch Incubation Time and Early Growth of Broiler Chickens, Poultry Science, Vol. 62, pp. 247-254 (1983); Wyatt et al., Influence of Egg Size, Eggshell Quality, and Posthatch Holding Time on Broiler Performance, Poultry Science, Vol. 64, pp. 2049-2055 (1985); Pinchasov et al., Comparison of Post-Hatch Holding Time and Subsequent Early Performance of Broiler Chicks and Turkey Poults, British Poultry Science, Vol. 34, pp. 111-120 (1993)). Provision of individual nutrients such as glucose has not been found to consistently or permanently improve performance or livability when administered as a simple solution in the absence of other nutrients (Azahan et al., Growth, Food Intake and Energy Balance of Layer and Broiler Chickens Offered Glucose in the Drinking Water and the Effect of Dietary Protein Content, British Poultry Science, Vol. 30, pp. 907-917 (1989); Moran, Effects of Posthatch Glucose on Poults Fed and Fasted During Yolk Sac Depletion, Poultry Science, Vol. 68, pp. 1141-1147 (1989); Moran Effects of Egg Weight, Glucose Administration at Hatch, and Delayed Access to Feed and Water on the Poult at 2 Weeks of Age, Poultry Science, Vol. 69, pp. 1718-1723 (1990)).
Although provision of water and feed can result in performance superior to that of fasted, water-deprived birds, attempts to include water in the hatch incubator or in transport boxes have been unsuccessful. This is because humidity control and relatively high temperature are critical in ensuring high hatchability and because water alone or in a simple gruel can escape, resulting in some chicks getting wet. Chicks cannot regulate their body temperature sufficiently well to tolerate cooling by evaporation. Since inanition does not threaten survival, commercial practice is not to offer feed or water until the animals reach the farm.
SUMMARY OF THE INVENTION
Among the objects of the invention, therefore, may be noted the provision of a high moisture material to improve the health and enhance the livability, cumulative weight gain and feed conversion efficiency of poultry and other animals. The formulation may be fed, for example, immediately after hatching or birth of the animal and for this application, the formulation preferably excludes nutrients which are not used well during the first days of life and provides those which are readily used and confer a performance advantage. Also among the objects of the invention is a formulation which is stabilized against microbial growth, is resistant to syneresis and which can be packaged in bulk, shipped, extruded (with or without prior remixing of the bulk material) and divided into dosage unit form at the location of use of the formulation.
Briefly, therefore, the present invention is directed to a process for enhancing the health, livability, cumulative weight gain or feed conversion efficiency of poultry. The process comprises feeding the hatchlings a high moisture material before they are started on a diet comprising dry food. The hatchlings are fed the high moisture material beginning at a point in time preferably within the first 5 days of hatching, more preferably within the first 3 days of hatching. The high moisture material can contain a coloring agent, palatability modifier, or adjuvant. Whether an adjuvant is present or not, the high moisture material also enhances weight gain as well as resistance to disease challenge or other stresses in poultry.
The present invention is also directed to a composition and process for inoculating poultry and other animals with living cells such as yeast or bacteria. The animal is fed a high moisture material which contains a number of colony forming units of the cells which is sufficient to inoculate the animal and produce the desired effect.
The present invention is also directed to high moisture materials for enhancing the health, livability, cumulative weight gain or feed conversion efficiency of poultry. These high moisture materials contain at least about 50% by weight water, at least about 10% by weight digestible carbohydrate and, optionally, one or more additional ingredients selected from the group consisting of bile salts, surfactants, enzymes, enzyme co-factors, hormones, prostaglandins, peptides, immunoglobulins, cytokines, vaccines and other

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nutrient formulation and process for enhancing the health,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nutrient formulation and process for enhancing the health,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nutrient formulation and process for enhancing the health,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2485123

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.