Method and apparatus for precise positioning of arrays with...

Radiation imagery chemistry: process – composition – or product th – Registration or layout process other than color proofing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S201000, C430S946000, C347S233000, C347S234000, C347S242000, C347S244000, C347S248000, C347S257000, C347S258000, C355S022000, C355S033000, C396S324000, C396S330000

Reexamination Certificate

active

06177217

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the printing of interdigitated images which will be used in conjunction with lenticular arrays, blocking line screens or the like. In particular, it relates to a method and an apparatus for achieving alignment of a printed interdigitated images with respect to arrays with periodic structures, for example, lenticular arrays or blocking line screens.
BACKGROUND OF THE INVENTION
Lenticular arrays are used to give images an appearance of depth. More specifically, a lenticular array comprises a transparent upper layer A having narrow, parallel lenticules (cylindrical lenses) B on an outer surface, and an image-containing substrate layer C. (See FIG.
1
A). The image on the substrate layer C is called a composite image. It is formed by a set of image lines D. The image, viewed by the observer who is looking at a lenticular array, is called a lenticular image. The two layers of a lenticular array provide the lenticular image such that different views of this lenticular image are selectively visible as a function of the angle from which the lenticular array is viewed. If the viewed image is made by bringing together into a single composition a number of different parts of a scene photographed from different angles, and the lenticules are vertically oriented, each eye of a viewer will see different elements and the viewer will interpret the net result as a three dimensional (3-D) image. The viewer may also move his head with respect to the lenticular array, thereby observing other views with each eye and enhancing the sense of depth.
Another method for showing 3-D images is the use of a parallax media such as a blocking line screen (
FIG. 1B
) positioned at a specific distance from the image lines forming a composite image. This process, known as a parallax process, causes blocking of all image lines except those corresponding to one specific image. This allows the viewer's eyes to view different images as three-dimensional (3-D) images, when the blocking line screen is oriented vertically.
When a lenticular array or a blocking line screen is oriented horizontally, each eye receives the same image. In this case, the multiple images can give illusion of motion when the composite image, located on the back of a lenticular array or a blocking line screen, is rotated about a line parallel to the viewer's eyes. Thus, a simulation of motion is achieved by the process of either tipping a lenticular array or a blocking line screen containing the composite image, or by movement of the viewer's head to a different angle with respect to the lenticular array or a blocking line screen.
Whether the lenticules or the blocking line screen is oriented vertically or horizontally, each of the viewed images is generated by the image lines which have been interlaced at the spatial frequency of the lenticular array (determined by the lenticule's width) or the blocking line screen. Interlacing lines of each image with other images is referred to as interdigitation. A full set of such interdigitated image lines forms the composite image. Interdigitation can be better understood by using an example of four images used to form a composite image with a material having at least three lenticules. In this example, line
1
from each of the four images is in registration with the first lenticule; line
2
from each of the four images is in registration with the second lenticule; etc. Each lenticule is associated with a plurality of image lines D or an image line set (See FIG.
1
C), and the viewer should see only one image line of each set with each eye for each lenticule. It is imperative that the image line sets be registered accurately with respect to the lenticules, so that the proper picture is formed when the assembly is viewed. However, this is difficult to achieve.
For example, one method of conventional recording of the interdigitated image lines requires recording of the interdigitated image lines on a recording material contained on the substrate layer C and then attaching the substrate layer C to the upper layer A, with the recorded image lines D in precise alignment to the lenticules B to yield the desired image structure. The precise alignment of the specific lenticules with the desired image line set during the attachment of the recording material to the lenticular overlay (i.e., the upper layer A) is difficult to achieve. The imprecise alignment results in a degraded image quality.
Sometimes, the composite image is written to a separate planar sheet, thereby forming an image sheet, which is then aligned and bonded to the back of the lenticular array. For example, U.S. Pat. No. 5,492,578 discloses a method and an apparatus for aligning an image sheet with a lenticular array by bending and stretching of the image sheet relative to the lenticular array while monitoring the alignment during the bonding operation. The technique requires much manual manipulation and a flexible media for the image sheet. U.S. Pat. No. 5,479,270 discloses a method and apparatus for aligning a lenticular array to a separate image sheet that uses a video camera and Moire techniques.
Conventional recording of composite images has been accomplished with a stereoscopic image recording apparatus that uses optical exposure. A light source, such as a halogen lamp, is projected through an original image, via a projection lens, and the light rays are transmitted through the lenticules and focused on the substrate layer of the lenticular array. The composite image is exposed on a recording material of the substrate layer as interdigitated image lines. However, the quality of the composite image is degraded by aberration introduced by the lenticular.
Contact print exposure from a composite image negative to a radiation sensitive layer coated on the back of and in alignment with a lenticular array has been disclosed in U.S. Pat. No. 5,729,332. The disclosed alignment method makes use of multiple video cameras and detectors as well as of special reference grid structures fabricated into the lenticular array and of similar grid structures on the image negative. Analysis of Moire fringes produced by the combination of the grid structures is used to achieve alignment between the lenticular array and the image negative.
Recording of the composite images by scanning exposure to the back of lenticular arrays is also known. U.S. Pat. No. 5,539,487 “Method and Apparatus for Recording Stereoscopic Images and Lenticular Recording Material Used Therefor” by S. Taguchi and S. Igarashi discloses a method of directly exposing a light sensitive recording layer (typically of silver halide emulsion) coated on the backside of a lenticular array. The exposure device utilizes three optical wavelengths which are either scanned or CRT (full image) projected to achieve full color. Post processing is necessary to develop the image as in most silver halide films. The pitch measurement technique disclosed in U.S. Pat. No. 5,539,487 teaches the use of a light emitter cooperating with a light detector. The light emitter and the light detector are positioned just beyond opposite edges of the lenticular array such that the light path between the emitter and detector is parallel to the plane of the lenticular array and the light beam traverses parallel to the long axes of the lenticules. The lenticular array is translated in a direction perpendicular to the long axes of the lenticules. Thus, the light emitted by the emitter and propagated toward the detector can be obstructed or transmitted as this light alternatively strikes the edge of a lenticule or propagates along the valley between alternate lenticules. The signal generated by the detector is used to provide information about the pitch of the lenticular array. However, the resultant signal modulation is relatively low, making it difficult to accurately determine array pitch. In another embodiment this patent discloses the use of a position marker. This marker is provided on the lenticular array at a site outside of the image recording re

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for precise positioning of arrays with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for precise positioning of arrays with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for precise positioning of arrays with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2483894

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.