Solar battery module for optical electrolysis device and...

Batteries: thermoelectric and photoelectric – Photoelectric – Panel or array

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C136S248000, C136S250000, C205S923000

Reexamination Certificate

active

06198037

ABSTRACT:

TECHNICAL FIELD
This invention concerns a solar battery module for a photoelectrolytic device and a photoelectrolytic device that employs the solar battery module; in particular, it concerns technology in which the electrolysis of an electrolyte is carried out by solar energy using a solar battery module in which multiple spherical solar battery elements are connected in series and that generates the required electrolysis voltage.
BACKGROUND TECHNOLOGY
Heretofore there have been attempts in which water is electrolyzed by the photoelectromotive force produced by titanium oxide (TiO
2
), but because the wavelength of the light that allows energy conversion with titanium oxide is about 420 nm or less, the energy conversion efficiency with respect to sunlight is very low, and this technology has not been put to practical use. Heretofore, technology to electrolyze an electrolyte with the photoelectromotive force of sunlight by means of a solar battery immersed in the electrolyte has appeared in U.S. Pat. No. 4,021,323 and in unexamined patent application publication H6-125210 [1994] relating to the present applicant.
The U.S. patent discloses a solar battery array in which a pn junction is formed on spherical crystals of silicon and a common metal electrode film is formed on these multiple spherical crystals (a micro photoelectric cell), and a photochemical energy conversion device is described in which such an array of solar batteries is immersed in an electrolyte, and a solution of hydriodic acid or hydrobromic acid electrolyzed by the photoelectromotive force of sunlight.
Unexamined patent application publication H6-125210 [1994] discloses an array of light receiving elements in which multiple spherical crystals are formed near the surface of a semiconductor crystal substrate in matrix form and integral with the semiconductor crystal substrate, a photoelectromotive force generation part including pn junctions is formed on the surface part of the spherical crystals, and individual front-surface electrodes and a common back-surface electrode are formed on these multiple spherical crystals; it also discloses a photoelectrolytic device that includes the array of light receiving elements.
But with the technology described in these two documents, the direction in which sunlight can be received is limited to one surface, making it difficult to increase the light utilization rate in making use of the light in a light space.
In forming a solar battery array and individually forming the electrode films on the array of light receiving elements, the size of the photoelectromotive force is determined by the number of serial junctions of spherical crystals on which a pn junction is formed, so the solar battery array and array of light receiving elements must be designed and fabricated for each photoelectrolytic device. This makes it difficult to reduce the cost of fabricating solar battery arrays and arrays of light receiving elements suitable for photoelectrolytic devices, and makes it difficult to fabricate solar battery arrays and arrays of light receiving elements of wide application suitable for photoelectrolytic devices of various types and sizes.
The inventor of this invention has done research on photoelectrolytic devices that employ spherical semiconductor devices (of diameter about 0.5-2.0 mm) that function as micro photoelectric cells (or micro photocatalysts). In a photoelectrolytic device of this kind, it is necessary to support many small-particle spherical semiconductor devices in an electrolyte arranged so they can receive light, and to surely separate the reaction products, but as yet no structure has been proposed for thus arranging and supporting a large number of spherical semiconductor devices.
The purpose of this invention is to provide a solar battery module for a photoelectrolytic device that makes use of multiple independent grain-shaped spherical solar battery elements. A further purpose of this invention is to provide a solar battery module for a photoelectrolytic device in which one can appropriately set the size of the photoelectromotive force. Another purpose of this invention is to provide a solar battery module for a photoelectrolytic device of superior generality that can be applied to various photoelectrolytic devices. Another purpose of this invention is to provide a solar battery module for a photoelectrolytic device that can receive sunlight from various directions.
Another purpose of this invention is to provide a solar battery module for a photoelectrolytic device that can prevent overvoltage at the electrolysis electrodes and can promote the separation of reaction products from the electrodes. Another purpose of this invention is to provide a solar battery module for a photoelectrolytic device that has electrolysis electrodes having a catalytic function. Another purpose of this invention is to provide a photoelectrolytic device in which the solar battery module for a photoelectrolytic device is applied.
DISCLOSURE OF THE INVENTION
The solar battery module for a photoelectrolytic device of this invention is characterized in that it has multiple spherical solar battery elements, a transparent cylindrical holding member that accommodates and holds these spherical solar battery elements in a condition where they are electrically connected in series, and a pair of electrolysis electrodes that are mounted liquid-tightly on both ends of this holding member and are exposed to the outside of the holding member; each of the spherical solar battery elements has a p-type or n-type spherical semiconductor crystal, a photoelectromotive force generation part that includes a pn junction formed on the surface part of this spherical semiconductor crystal, and a pair of electrodes formed on both ends that is symmetrical about the center of the spherical semiconductor crystal in order to tap the photoelectromotive force that is generated by this photoelectromotive force generation part, and in a state in which it is immersed in an electrolyte, it is suitable for electrolysis of the electrolyte by the photoelectromotive force caused by sunlight.
Here, it is desirable to set the number of the multiple spherical solar battery elements in accordance with the voltage of the photoelectromotive force to be generated by the photoelectromotive force generation part and the electrolysis voltage needed for the electrolyte. On each surface of the pair of electrolysis electrodes it is desirable to form a metal form that has a catalytic function that promotes electrolytic reactions. And it is desirable to form on the part of the electrolysis electrodes that comes into contact with the electrolyte a pointy tip in order to reduce the overvoltage and promote the separation of reaction products.
In the solar battery module for a photoelectrolytic device, multiple spherical solar battery elements are accommodated in a transparent holding member in a state in which they are connected electrically in series, so a photoelectromotive force is generated by light that is incident from various directions. The size of the photoelectromotive force can be set freely by varying the number of series-connected spherical solar battery elements, which provides superior generality that can be applied to various photoelectrolytic devices. By forming a metal film that has a catalytic function on the surface of the electrolysis electrodes, the electrolysis can be speeded up by the catalytic effect. And by forming a pointy tip on the electrolysis electrodes, overvoltage can be reduced and the separation of reaction products can be promoted.
The photoelectrolytic device of this invention is characterized in that it has a container that accommodates an electrolyte inside it and into which sunlight can be introduced; multiple solar battery modules that are arranged in a state in which they are immersed in an electrolyte inside this container, receive sunlight, and generate photoelectromotive force; and a partition member that partitions the space between the electrolysis anode and the electrol

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Solar battery module for optical electrolysis device and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Solar battery module for optical electrolysis device and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solar battery module for optical electrolysis device and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2483846

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.