Monitoring and analysis of data in cyberspace

Computer graphics processing and selective visual display system – Computer graphics processing – Three-dimension

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S440000, C345S215000

Reexamination Certificate

active

06222547

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a data monitoring and analysis system. More specifically, the present invention defines a user interface providing a three dimensional representation of complex data, data relationships and system status.
BACKGROUND AND SUMMARY OF THE INVENTION
The operation of many complex systems requires an operator to monitor status of the system by assimilating a large amount of real-time status data received from various system components. Complex systems of this type include spacecraft operations, industrial plants, financial trading activities, and hospital monitoring of medical data from patients. All of these systems require important decisions to be made, sometimes quickly, in response to a myriad of data. Once the status of the system or the nature of a problem is understood, the system operator takes appropriate actions to implement decisions or to remedy the problem. In extreme cases, these actions may save the system from serious undesirable consequences. It is very important that this complex data be presented clearly and concisely so that the operator can obtain any information needed for diagnostic purposes as easily and quickly as possible.
Existing data display systems often use numerical or two-dimensional displays which require the operator to interpret and analyze the data and its relationship to other data. Some of the features of these kinds of displays are illustrated in
FIGS. 1
a
-
1
c,
which graphically illustrate how the composition of total information conveyed to a user varies over time for various interface types. The total information conveyed in these graphs is equal to the amount of “navigation data” plus the amount of “destination data”. Navigation data is defined as that class of information that orients a user in time, space, location and direction; informs the user of progress in relative and/or absolute terms; and that contains addresses, instruction to proceed, and/or warnings not to proceed. Destination data is defined as that class of information that satisfies the user's desire for information, for example, by answering a question.
Typically, the goal of a user interface is to maximize the volume of available destination data while minimizing the delay in making the destination data available. As shown in
FIG. 1
a,
an operator of a command-driven interface has very little destination data available initially and spends roughly half of the time traversing alphanumeric menus (“navigation data”) to get to the desired data display (“destination data”).
An operator of a menu-driven interface (
FIG. 1
b
) typically can access a larger volume of destination data somewhat faster after first navigating through one or more menu items. However, the operator can become frustrated upon encountering several layers of sub-menus before being able to access the bulk of the destination data. This results in a drop-off (at time D in
FIG. 1
b
) in the amount of available destination data.
In a graphical user interface (“GUI”), the operator traverses through various windows and screens to get at the destination data in a step-wise fashion as illustrated in
FIG. 1
c.
Certain destination data may not be accessible until the operator has stepped through a number of windows, thus diminishing the operator's efficiency. These graphs were presented by Michael Benedikt in the article “Cyberspace: Some Proposals” which appears in the book
Cyberspace: First Steps.
These shortcomings of command, menu and GUI driven interfaces are magnified in data intensive operational environments of the kind described above. The inventors recognized a need in these environments for an improved user interface that makes more information available in less time. Destination data is one example of such data. These problems are well illustrated in the example of spacecraft operation control.
During a typical spacecraft mission, data parameters from many different domains are monitored and/or analyzed in real time to ensure that the spacecraft and its instruments are working properly. A mission control site receives this data from the spacecraft by telemetry. In this setting high volumes of data are received at very frequent intervals. Monitoring this data poses a daunting and complex challenge. This is especially true when multiple spacecraft missions are being monitored simultaneously by a single system.
Early spacecraft data monitoring systems employed a panel of discrete, hardwired lights, each light corresponding to an individual data parameter. A team of human operators (e.g., flight controllers or analysts) monitoring the spacecraft mission, would continually observe the various lights to ensure that the spacecraft and its instruments were operating properly. A trained operator could readily determine whether error or alarm conditions were present simply by scanning the panel for the appropriate color light. For example, a green light might mean that a particular data parameter was within normal ranges, while a red light might indicate that acceptable levels for that parameter had been exceeded. The lights provided a dramatic and immediately comprehensible indication of system status. This early light-panel monitoring system hence had the advantage of providing the operator with an intuitive sense of system health.
As spacecraft and their associated instruments became more sophisticated, light-panel monitoring systems became inadequate to handle the volume and complexity of the telemetry data that was being collected. Light-panel systems also were difficult and labor-intensive to adapt for new types of telemetry data that changed with each mission.
The next generation of data monitoring systems attempted to solve this problem. A computer system (for example, a work station) received telemetry data and displayed it in textual (i.e., alphanumeric) form on the display monitor.
FIG. 2
shows a sample output of a typical text-based data monitoring system. The necessarily high volume of telemetry data causes the display screen to become cluttered and difficult to read. An operator relying on the text-based monitoring system in
FIG. 2
is required to study and understand large amounts of alphanumeric information to accurately monitor the health of spacecraft. That task requires extensive training and considerable diligence on the operator's part. Even with sufficient training, using a text-based system to monitor data is fatiguing for the operator and frequently results in missed alarm conditions or slow responses to alarm conditions.
In short, text-based data monitoring systems do not generate easily recognizable indicators of changes in system status. Rather, a change in system status (even a potentially catastrophic one) is signalled merely by changing one or more alphanumeric characters to other lphanumeric characters on a display screen. The screen typically contains several hundred such alphanumeric characters, and even the most vigilant human operator can occasionally overlook an important alarm condition. Thus, there is a need for a system that can present a large amount of information to a user in a way that is readily understandable and in a way that conveys important conditions in a very noticeable way.
The data monitoring system of the present invention uses a three dimensional simulated space representation, (sometimes called a “cyberspace representation,”), to interface with, and to communicate complex, real-time information to an operator. A cyberspace representation utilizes various elements (e.g., time, space, sound, travel, and user presence in the computer environment) to convey information to the operator. The root word “cyber” comes from the Greek word “kybernan” which means “to steer or control.” Literally, cyberspace means to steer or control space.
The cyberspace data monitoring system of the present invention may be implemented in conjunction with artificial reality or virtual reality systems. The cyberspace interface of the invention provides a graphically-oriented user interface where the operator is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Monitoring and analysis of data in cyberspace does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Monitoring and analysis of data in cyberspace, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monitoring and analysis of data in cyberspace will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2482070

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.