Communications: electrical – Condition responsive indicating system – Specific condition
Reexamination Certificate
2000-01-21
2001-04-03
Mullen, Thomas (Department: 2736)
Communications: electrical
Condition responsive indicating system
Specific condition
C119S051020
Reexamination Certificate
active
06211789
ABSTRACT:
BACKGROUND—FIELD OF INVENTION
This invention relates to a method and system for enabling a non-automated livestock producer to enter information concerning a specific meat animal into an integrated electronic database such that the meat animal may be tracked from its conception to its consumption, and a particular animal history can provide both quality assurance source verification and performance tracking.
Overview
There is a need, for both economic and quality assurance reasons, for an efficient and cost-effective method for identifying and tracking livestock, and for the monitoring of the production and processing of those livestock. Throughout the livestock production and processing cycle, there is a need for more detailed information so that ranchers, stockmen, feedlots, packers, distributors and retailers can make informed decisions about factors and variables such as genetics, herd management, purchasing, feed strategies, and ship dates. Producers who improve their animal performance can realize greater returns with performance-based compensation when accurate information about the history and the value of each animal is easily available.
There is also a growing concern about quality assurance in the livestock processing cycle; and there is an opportunity for producers and processors who can establish that quality assurance to improve their compensation. Effective quality assurance programs such as HACCP, or Hazards Analysis and Critical Control Points, require accurate and timely information about the history of each animal.
The Beef Industry
The beef industry is a good example of the livestock industry. Traditionally, there are four segments to the U.S. beef industry: the cow/calf producer, the stockman, the feedlot, and the packer.
The commercial cow/calf producer has a herd of mother cows that are used to produce calves. The cows are bred to bulls so that, ideally, each cow has a new calf each year. The calf crop that is produced each year is used primarily for meat production, with some calves retained as replacements for the herd. The calves are usually weaned from their mothers at between six and eight months of age. The traditional producer will sell his animals once they are weaned. Typically, the main objectives of the producer are to have a calf from each cow each year; to have healthy, vigorous calves with the highest weaning weights at the lowest cost; and to produce the best meat, by factors such as tenderness and taste, at the lowest cost.
In order to support these objectives, the producer is interested in efficient systems for the following: (1) identifying and tracking individual animals as they rotate through the producer's pastures; (2) identifying which animals have a good calving history; (3) monitoring the performance of various pastures; (4) recording calf birth date and birth weight statistics; (5) tracking the genetic history of each animal; (6) evaluating the performance of calves from particular cows or bulls; (7) recording the weaning date and weaning weight of each animal; and (8) recording treatments, vaccinations, and other significant or events that have occurred in the animal's life.
The stockman receives the weaned calves when they weigh approximately 500 pounds, and feeds them for four to six months until they weigh 700 to 800 pounds. The stockman's typical objective is to add weight as fast as possible, while keeping the animals healthy. In order to support these objectives, the stockman is interested in the following: (1) collecting and using information such as identifying and tracking individual animals as they rotate through the stockman's pastures; (2) recording the beginning, ending, and periodic weight measurements and treatments; and (3) recording vaccinations and other significant events that have occurred in the animal's life in order to track of the success of treatments as well as to eliminate duplicate treatments.
After the stockman phase, the animals are typically sent to a feedlot where they are fed so as to add pounds quickly while keeping the animals healthy. The cattle will be finished when they reach a weight of approximately 1,100 to 1,200 pounds. The feedlot is interested in animal weight gain, animal health, the effectiveness of various feed ration formulations, required waiting periods on shipping animals after drug treatments, and animal origin and history. The animals are then sent to the packer/slaughter facility. The slaughter facility or packer typically slaughters the animal and then chills, ages and cuts the carcass into the various cuts of meat and packs those cuts for shipment to distributors and retailers.
Typically, each of these four segments, the cow/calf producer, the stockman, the feedlot, and the packer, have attempted to optimize their own operations, and there has been relatively little emphasis on cooperative optimization efforts. There is a growing recognition across these industry segments, however, that for both quality assurance reasons and for the improvement of the industry in general, it is desirable to attempt improved data collection and data management. An object of the present invention is to provide that improved data collection and data management.
Variability and Quality Control
There is variability in individual animal production efficiency and in individual carcass quality characteristics such as weight, frame size, muscling, fat content, marbling, and feed efficiency. This variation is due to a combination of genetic factors and environmental factors such as health and drug treatments, nutrition, and growth history. Many of the genetic and environmental factors can be controlled or managed to improve both quality and economic return on investment if accurate historical information were available throughout the production cycle.
The livestock industry has recognized that certain livestock species and breeds outperform other species during production and processing. The prior art has used data collection systems and statistical analysis of data related to livestock breeds in order to identify higher performance breeds. There is a need to extend this data collection so that individual producers can make informed decisions about individual breeding animals in order to further improve their herds.
BACKGROUND—DESCRIPTION OF RELATED ART INCLUDING INFORMATION DISCLOSED UNDER 37 CFR AND 37 CFR 1.98
Electronic Identification
Electronic identification devices and systems have provided a good method for providing identification of livestock. Typically, electronic identification systems use a passive electronic identification device that is induced to transmit its identification signal by an externally radiating source. These passive electronic identification devices may be a transponder carried with the individual animal on a collar as illustrated and described in Carroll U.S. Pat. No. 4,475,481, issued Oct. 9, 1984, entitled “Identification System” and in Kuzara U.S. Pat. No. 4,463,353, issued Jul. 31, 1984, entitled “Animal Feeding and Monitoring System”; in an ear tag such as those commercially available from Destron/Fearing, Inc., Allflex USA, Inc. and Avid Marketing, Inc.; in a transponder implanted in the animal as illustrated and described in Pollack U.S. Pat. No. 4,854,328, issued Aug. 8, 1989, entitled “Animal Monitoring Telltale and Information System” and in Hanton U.S. Pat. No. 4,262,632, issued Apr. 21, 1981, entitled “Electronic Livestock Identification System”; or in a bolus such as illustrated and described in U.S. Pat. No. 4,262,632, issued Apr. 21, 1981, entitled “Electronic livestock identification system” by John P. Hanton and Harley A. Leach.
Although electronic identification through radio frequency identification (RFID) tags or barcodes are used in some phases of the livestock production cycle, there is a need to provide a means for individual animal identification throughout the production cycle and to minimize the difficulty of data entry throughout the industry.
Databases and Management Systems
At different stages of the production cycl
Curkendall Leland D.
Oldham Courtney A.
Mullen Thomas
Yeager Rick B.
LandOfFree
Method and system for manual entry of data into integrated... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for manual entry of data into integrated..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for manual entry of data into integrated... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2481761