Apparatus and method for simultaneously transmitting...

Telephonic communications – Telephone line or system combined with diverse electrical... – Remote indication over telephone line

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S110010

Reexamination Certificate

active

06219408

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to devices used for reading and transmitting biomedical data over the telephone.
2. Description of Prior Art
Patients with specific health conditions may require constant supervision and examination by their physicians or health technicians. However, getting oneself to a hospital or clinic may be impossible, impractical or inconvenient. In addition the use of remote monitoring of the patient by the health care provider is becoming increasingly more common. The remote monitoring of EKG signals has been practice for many years. The prior art includes biomedical devices that allow a patient to perform biomedical readings upon himself or herself and transmit these readings over the telephone.
In conducting these self-readings, it is often important to apply the reader or sensor in the proper place and in the proper manner. The conventional remote monitoring EKG device is comprised of a plurality of skin electrodes that are wired into a transmitter box which has an acoustic coupler provided in its top surface. The handset of the phone through which the EKG signals are being transmitted to a receiving unit at the hospital or physician's office is placed into a receiver cradle on the top of the transmitter box. In the conventional acoustic coupling device, the patient and the technician cannot speak to or hear each other during the interval in which the reading occurs, because the handset is intimately coupled to the acoustic coupler on the top of the transmitter box. A slight misconfiguration or bodily movement after a proper configuration may upset the readings and render the results useless.
In such a case, the patient must make and transmit the reading over again. Typically, what occurs is that the initial few electrode placements are faulty and the receiving technician attempts to get the patient's attention by shouting over the phone in the hope of being heard from the phone's earpiece lying on top of the acoustic coupler. Eventually, the patient realizes that the placements are faulty either by hearing the technician's loud yelling, or by speaking to the technician after a faulty test has been completed. When a sampling takes several minutes to take and transmit, this can be an exasperating experience for both the patient and the health care provider. This is particularly true since many of the patients using such devices are elderly and are intimated or confused by the monitoring procedure and equipment. Thus, it would be advantageous to provide a device that allows the patient and technician to talk to each other as the reading occurs in order to minimize errors and save time.
The prior art discloses an apparatus and a method for concurrent communication of medical patient data and voice (Saltzstein, U.S. Pat. No. 5,704,364). However, such an apparatus is expensive and complex for it requires the patient to have a life signs monitor, a digital simultaneous voice and data (DSVD) device, and a modem. Furthermore, the receiving party must also have a DSVD device and a modem. Both the apparatus and method are complex for they involve multiple series of digitizing, undigitizing, modulating, and demodulating.
Therefore, what is needed is an inexpensive and simple telephone device that allows a patient to conduct self-readings while simultaneously being able to talk and hear. A telephone apparatus with less devices and components will simplify the process of taking self-measurements as well as lower the cost of manufacturing such an apparatus.
What is also needed is a method for simultaneously transmitting biomedical readings and human voice over a telephone.
BRIEF SUMMARY OF THE INVENTION
The invention is an apparatus for simultaneously transmitting biomedical readings and human voice over a conventional telephone line. The apparatus comprises one or more sensors, a cable, and a transmitter device. In the case of an EKG signal, the sensor comprises one or more electrodes to take biomedical readings, a wire connected to each electrode, and a pad. The electrodes are disposed on the pad in a predetermined configuration so that the relative placement of the electrodes is fixed by their fixation in the pad and need not be individually placed by the patient as is the case with separate prior art EKG electrode. The wires transmit the biomedical readings from the electrodes. The cable groups the wires into a single unit and leads them to the transmitter device.
The transmitter device comprises a converter to convert the biomedical readings into acoustic signals and a transmitter speaker to emit the acoustic signals. The acoustic signals are translatable back to electrical biomedical signals by a receiving unit. The transmitter device is disposed within acoustic range of, or adjacent to the telephone microphone such that the transmitter speaker inputs acoustic signals into the telephone microphone. The transmitter device is disposed such that the telephone microphone is also available for oral speech being simultaneously transmitted into the telephone microphone with the acoustic signals converted from the biomedical readings.
The apparatus may be applied to various phone members such as a speakerphone, a conventional phone with a handset, and a headset. The apparatus may also be applied to a wireless phone such as wireless handsets and headsets wherein the telephone microphone and the telephone speaker are disposed in the wireless phone.
The apparatus may take a variety of biomedical readings, including but not limited to cardiograms, pacemaker readings, respiratory rate, heart rate, impedance for tidal volume and minute ventilation, EEG, defibrillator data output from an RF couple, data from event recorders and loop recorders, as well as other medical equipment such as IV infusion pumps and more. Furthermore, the readings may include any digital signal which is converted to analog for transmission to a receiving station.
The invention may also be characterized as a telephone line with a first end and a second end. The first end hosts the transmitter device while the second end hosts the receiving party. The apparatus is adapted to transmit oral communication from the receiving party at the second end back to the first end while simultaneously transmitting oral speech and acoustic signals from the first end to the second end.
The invention may also include its own telephone. The telephone has a microphone and a speaker. The telephone may be a handset, headset, or speakerphone. To use the telephone of the invention, the conventional handset or telephone is unplugged from the conventional telephone base. The telephone is then plugged into the conventional telephone base. The telephone may also be wireless, in which case, the telephone would not be plugged into an conventional telephone base. The wireless telephone must be configured to operate in conjunction with an conventional telephone line.
The invention may also be characterized as a method. The method comprises taking electronic measurements of biomedical data, converting the electronic measurements into an acoustic signal, transmitting the acoustic signal to the microphone, and orally transmitting human voice to the microphone simultaneously with the transmitting of the acoustic signal.
The method further comprises simultaneously receiving an incoming acoustic signal from the speaker while simultaneously transmitting human voice and the acoustic signal.
Therefore, in summary it can be appreciated that the invention makes it possible for a patient to orally communicate with the receiving party or health care provider while transmitting biomedical readings. Both the patient and the receiving party may talk and listen while biomedical readings are simultaneously being transmitted.
The invention now having been briefly summarized, it may be better visualized by turning to the following drawings wherein like elements are referenced by like numerals.


REFERENCES:
patent: 3872252 (1975-03-01), Malchman et al.
patent: 3882277 (1975-05-01), DePed

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for simultaneously transmitting... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for simultaneously transmitting..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for simultaneously transmitting... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2481101

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.