Refueling nozzle

Fluent material handling – with receiver or receiver coacting mea – Filling means with receiver or receiver coacting means – Flexible hose terminal with receiver engaging means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C141S350000, C141S301000, C220S086200, C137S614040

Reexamination Certificate

active

06250348

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to refueling nozzles for use in rapid yet safe refueling of a race car. More specifically, this invention relates to an improved fuel nozzle for achieving faster and safer refueling of a race car during a pit stop.
2. Discussion of the Art
Modern automobile racing is an extremely popular spectator sport which attracts the attention of millions of fans throughout the world. Modern race cars are the culmination of sophisticated and costly engineering technologies, including structural frames and materials, aerodynamic designs, and specialized engines. Professional race teams literally spend millions of dollars to develop and maintain a modern race car for competition in several racing events over the course of a single racing season. Competition among these professional race teams for sponsorship money is intense and the pressure to succeed on the race track is great.
In recent years, the development of race car technology has proceeded in parallel with efforts to improve car and driver safety. To this end, the design and capacity of fuel tanks or fuel cells on the race car have evolved in efforts to reduce the potential of explosion and/or fire in the event of a mishap on the race course. Similarly, considerable attention has been given to preventing fuel spillage in the pits when a race car is refueled. Limiting the potential for an explosion and/or fire in the pits is of special concern in view of the presence of multiperson pit crews.
By way of further example, over the past few decades, the on-board fuel capacity of a typical race car has been progressively reduced so that the cars carry less fuel during a race, thereby reducing the chances of fuel spillage and/or fire should a mishap occur. This reduction in fuel tank capacity, however, has necessitated a greater number of pit stops during a typical race event. In this regard, although tire changes and other service activities may be performed during a routine pit stop, the duration of most pit stops is related primarily to the time needed to refill the fuel cell on the car so that the car can resume the race. For any car to be competitive, it is essential for the cumulative time in the pits to be as short as possible. As a race progresses, the speed and efficiency of each pit stop increases to create, in effect, a secondary race among pit crews that can be equally important to the primary race on the track. With this in mind, improvements in refueling safety are needed.
Refueling systems for race cars are the subject of specific rules and regulations aimed at preventing safety compromises in order to achieve faster car refueling times. Generally, the fuel flows by gravity through a fuel hose and nozzle to a fuel receiver on the car. Such nozzle-receiver connection opens a fuel flow valve in the nozzle to permit gravity drainage of fuel from the pitside tank to the car fuel cell.
Several problems are present in the prior art. One such problem is fuel spillage. This occurs because the refueling nozzle is not restricted to only opening when fully engaged with the receiver. As a result, the refueling nozzle opens prior to insertion into the receiver and substantial spillage occurs. The same problem exists when the refueling nozzle is removed from the receiver.
Another problem is the insufficient fuel flow rate through the fuel nozzle. The reduced flow rate often occurs because an internally supported poppet valve is used in the nozzle which impedes the flow of fuel into the receiver.
U.S. Pat. No. 5,634,505 is commonly owned with the present application and the details of that refueling system are incorporated herein by reference.
BRIEF SUMMARY OF THE INVENTION
A refueling system for delivering fuel from a pitside gas can to a receiver on a race car is provided.
The present invention relates to a race car refueling system of the gravity drain type wherein an improved fuel nozzle permits fuel flow to the car at a comparatively faster flow rate and additional safety. By reducing the refueling time needed for each pit stop, the refueling system of the present invention permits a race car to be more competitive particularly during long distance races, by significantly reducing the cumulative time spent in the pits.
The refueling system includes a receiver, an improved fuel nozzle, and a hose for connecting the fuel nozzle to a pitside fuel tank. The nozzle features a large cross-sectional fuel passage capable of discharging fuel into a race car in a short period of time without any fuel spillage.
The increased fuel flow rate through the nozzle is achieved by the provision of an externally supported poppet-style valve at a head of the fuel nozzle. A leakproof design is achieved by using first and second main independent seals. The first seal maintains a tight connection between components of the poppet-style valve when in the closed position particularly when the fuel nozzle is disengaged from the receiver. The second seal secures the connection between the fuel nozzle and the receiver during the refueling operation.
One advantage of the present invention is the provision of a new and improved refueling nozzle.
Another advantage of the present invention is the provision of a refueling nozzle which includes a self-aligning nose retainer.
Still another advantage of the present invention is the provision of a refueling nozzle that requires no levers to cock or keyways to align when attaching the nozzle to a receiver.
Yet another advantage of the present invention is the provision of a refueling nozzle which includes a plurality of flexible seals preventing spillage.
An additional advantage of the present invention is the provision of a refueling nozzle which includes an optimized high speed flow path.
A further advantage of the present invention is the provision of a refueling nozzle including a rugged design manufactured from high strength, low weight aluminum alloys.
Still another advantage of the present invention is the provision of a refueling nozzle of modular construction which requires only simple maintenance.
Yet another advantage of the present invention is the provision of a refueling nozzle that includes fire safe operation in hazardous pit areas.
Another advantage of the present invention is the lack of any internal structural support for the poppet valve which allows an increased fuel flow rate through the refueling nozzle.
Still other benefits and advantages of the invention will become apparent to those skilled in the art upon a reading and understanding of the following detailed specification.


REFERENCES:
patent: 3662793 (1972-05-01), Calisher et al.
patent: 3674061 (1972-07-01), Calisher et al.
patent: 3734149 (1973-05-01), Hansel
patent: 3790126 (1974-02-01), Ostand et al.
patent: 3851852 (1974-12-01), Blanchard et al.
patent: 3885608 (1975-05-01), Ayres
patent: 4898395 (1990-02-01), Kawase
patent: 4941587 (1990-07-01), Terada
patent: 5056570 (1991-10-01), Haris et al.
patent: 5634505 (1997-06-01), Wong
patent: 5878798 (1999-03-01), Harris et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Refueling nozzle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Refueling nozzle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Refueling nozzle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2480548

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.