Optical: systems and elements – Deflection using a moving element – Using a periodically moving element
Reexamination Certificate
1998-08-25
2001-09-11
Pascal, Leslie (Department: 2633)
Optical: systems and elements
Deflection using a moving element
Using a periodically moving element
C359S199200
Reexamination Certificate
active
06288814
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to an electronic circuit for providing a linear output from an amplitude modulated transmission device such as a semiconductor laser which has an output distorted from its input due to inherent nonlinearity. The distortion of the nonlinear device is compensated by applying a predistorted signal to the input of the nonlinear device. The predistortion is chosen such that the distortion of the nonlinear device restores the undistorted signal.
BACKGROUND
Directly modulating the analog intensity of a light-emitting diode (LED) or semiconductor laser with an electrical signal is considered among the simplest methods known in the art for transmitting analog signals, such as sound and video signals, on optical fibers. Although such amplitude modulation techniques have the advantage of significantly smaller bandwidth requirements than baseband digital modulation or frequency modulation, amplitude modulation may suffer from noise and nonlinearity introduced by the optical source.
Distortion inherent in certain analog transmitters prevents a linear electrical modulation signal from being converted linearly to an optical signal, and instead causes the signal to become distorted. These effects are particularly detrimental to multi-channel video transmission which requires excellent linearity to prevent channels from interfering with one another. A highly linearized analog optical system has wide application in CATV, interactive TV, and video telephone transmission, for example.
Linearization of optical and other nonlinear transmitters has been studied for some time, but proposed solutions suffer from practical disadvantages or cost penalties that limit usefulness to high value devices. Feedforward techniques, for example, require complex system components such as optical power combiners and multiple optical sources.
One method employed in the past to reduce distortion inherent in nonlinear devices has been predistortion. In this technique, a modulation signal is combined with a signal equal in magnitude to the distortion inherent in the nonlinear device but opposite in sign. When the nonlinear device is modulated by the combined signal, the device's inherent distortion is canceled by the distortion signal generated by the predistortion, and only the linear part of the source signal is transmitted. The intermodulation products in the predistortion signal are at frequencies that are additive and subtractive combinations of integer multiples of the input frequencies. In the distribution of AM signals for cable television, for example, there are often as many as 80 frequencies on a particular band and plenty of opportunities for second order and third order intermodulation products of those frequencies.
Current predistortion techniques generally divide an input signal into two or more electrical paths and generate predistortion on one or more of the paths resembling the distortion inherent in the nonlinear transmitting device. The generated predistortion is the inverse of the nonlinear device's inherent distortion and serves to cancel the effect of the device's inherent distortion when recombined with the input signal before application to the nonlinear device.
Advanced multi-path predistortion circuits are flexible and highly effective for linearizing output of a wide range of nonlinear devices. One such multi-path predistortion circuit is disclosed in U.S. Pat. No. 4,992,754, issued to Blauvelt et al. The circuit is capable of generating frequency specific distortion products for compensating frequency-dependent nonlinearities, and is useful for applications requiring an exceptionally high degree of linearity, such as, for example, CATV applications.
Although multi-path predistortion circuits can be used in a broad variety of applications, the design of these circuits is relatively complex. This complexity manifests itself in circuits that are often too expensive for applications needing only a modest degree of linearization. One skilled in the art would appreciate a low-cost circuit of relatively simple design for limited application, particularly if such a circuit were fabricated from existing low-cost components commonly used in signal transmission applications.
Those skilled in the art would also appreciate a circuit that could produce frequency dependent third-order distortion. Simple third-order distortion, such as that produced by an ideal diode, has the property that the distortion is real and independent of frequency. Many non-linear transmitters or amplifiers, however, contain reactive elements such as inductances, capacitances or delays, which cause the device to produce distortion depending on the input and output frequencies and the distortion frequencies. Nazarathy, U.S. Pat. No. 5,161,044, discloses a circuit in
FIG. 15
of that patent which produces essentially real, frequency-independent predistortion. The capacitors and inductors in Nazarathy are added for biasing purposes and to block the DC and AC currents. However, the circuit disclosed by Nazarathy may not have the right phase or frequency dependence for each set of input frequencies, to be substantially the same in magnitude and opposite in sign to the distortion produced by the non-linear device.
The present invention accordingly is addressed to a low-cost predistortion circuit reducing second and higher order distortion products produced by a nonlinear device and to a circuit for generating frequency dependent third-order distortion.
SUMMARY
Thus, in practice of this invention according to one embodiment, an in-line predistortion circuit is provided for reducing distortion in the transmission of analog signals. The distortion so generated, or predistortion, is adjusted to be substantially equal in magnitude and opposite in sign to the second or higher order intermodulation product distortion inherent in a nonlinear modulation device to which the signal is applied. The real component of the predistortion signal is produced by a first device such as an amplifier, and is adjusted in amplitude to match the amplitude of the distortion by the nonlinear device. The imaginary component of the predistortion signal is adjusted through introduction of a distortion signal out of phase with the real component of the predistortion signal on the in-line electrical path. The real and imaginary components are combined to produce a single modulation signal including intermodulation product distortion for application to the nonlinear device. The in-line predistortion circuit largely linearizes the transmission of modulating signals by canceling distortion inherent in nonlinear transmitting devices and can be formed with commonly-used, low-cost components.
In an alternate embodiment, the real component of the predistortion signal is produced by a FET configured as a voltage-controlled resistor, connected from the RF signal path to ground. In another embodiment, the real component of predistortion is produced by the parallel combination of a diode and a resistor connected in series with the RF signal path. The magnitude of the predistortion produced by these devices is adjustable by changing the DC bias current supplied to the device.
In another alternate embodiment, a separate predistortion circuit is provided for generating frequency-dependent third-order distortion. Frequency dependent third-order distortion is generated by the combination of a pair of antiparallel diodes with reactive circuit elements and delays. The magnitude of the predistortion produced by this circuit is adjustable by changing the DC bias current supplied to the diodes.
In the in-line predistorter of the present invention, the desired real and imaginary distortion terms may be synthesized by summing the distortion contributions from several different distorter elements. In the simplest case, one distorter produces a constant real distortion, another produces distortion proportional to frequency, f, and so on. However, it is not essential to have the simplest set of distorters. Distorters with more com
Christie Parker & Hale LLP
Ortel Corporation
Pascal Leslie
LandOfFree
In-line predistorter for linearization of electronic and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with In-line predistorter for linearization of electronic and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and In-line predistorter for linearization of electronic and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2478800