Network planning traffic measurement program

Telephonic communications – Diagnostic testing – malfunction indication – or electrical... – Testing of subscriber loop or terminal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S114030, C379S133000, C379S134000, C379S219000

Reexamination Certificate

active

06282267

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a method and system for analyzing a variety of network traffic patterns to permit network planners to design trunk upgrades between various offices and/or to plan the addition of new offices.
Acronyms
The written description uses a large number of acronyms to refer to various services, messages and system components. Although generally known, use of several of these acronyms is not strictly standardized in the art. For purposes of this discussion, acronyms therefore will be defined as follows:
Address Complete Message (ACM)
Advanced Intelligent Network (AIN)
Asynchronous Digital Signal Line (ADSL)
ANswer Message (ANM)
Automatic Message Accounting (AMA)
Automatic Number Identification (ANI)
Call Processing Record (CPR)
Call Detail Record (CDR)
Central Office (CO)
Certified Local Exchange Carrier (CLEC)
Common Channel Interoffice Signaling (CCIS)
Comma Separated Values (CSV)
Data and Reporting System (DRS)
Engineering Data Acquisition System (EDAS)
Executive Information System (EIS)
Destination Point Code (DPC)
Fiber Distributed Data Interface (FDDI)
Generic Data Interface (GDI)
Initial Address Message (IAM)
Integrated Service Control Point (ISCP)
Integrated Services Digital Network (ISDN)
ISDN User Part (ISDN-UP)
Intelligent Peripheral (IP)
Internet Service Provider (ISP)
Line Identification Data Base (LIDB)
Message Processing Server (MPS)
Multi-Services Application Platform (MSAP)
Office Equipment (OE)
Online Analytical Processing (OLAP)
Origination Point Code (OPC)
Personal Area Network (PAN)
Personal Communications Service (PCS)
Plain Old Telephone Service (POTS)
Point in Call (PIC)
Personal Identification Number (PIN)
Primary Rate Interface (PRI)
Public Switched Telephone Network (PSTN)
Release Complete Message (RLC)
Release Message (REL)
Revenue Accounting Office (RAO)
Service Control Point (SCP)
Service Creation Environment (SCE)
Service Management System (SMS)
Service Switching Point (SSP)
Signaling System 7 (SS7)
Signaling Point (SP)
Signaling Transfer Point (STP)
Simplified Message Desk Interface (SMDI)
Speaker Identification/Verification (SIV)
Terminating Attempt Trigger (TAT)
Time Slot Interchange (TSI)
Traffic Service Position System (TSPS)
Transaction Capabilities Applications Part (TCAP)
Transmission Control Protocol/Internet Protocol (TCP/IP)
Wide Area Network (WAN)
BACKGROUND ART
An essential problem in optimizing a telecommunications network is balancing equipment and trunking against service and cost. Network design involves predicting future demand based on past results, evaluating the capacity of equipment and facilities, and providing the correct amount of capacity in the proper configuration, in time to meet service objectives. Since virtually every element of a telecommunications system is subject to failure or overload effective testing, monitoring, control, and maintenance is essential to obtain an acceptable level of performance.
U.S. Pat. No. 5,475,732 issued to Eugene Pester Dec. 12, 1995, for Common Channeling Signaling Network Maintenance and Testing, describes an SS7 Network Preventative Maintenance System for detecting potential SS7 and switched network troubles, automatically analyzing the troubles, and providing alarm and corrective action to avoid major network events. The Pester SS7 Real Time Monitor System described in that patent is a multi stage SS7 network preventative maintenance tool that detects potential SS7 and switched network troubles, automatically analyzes those troubles, and provides alarm and corrective action instructions to maintenance personnel in time to avoid a major network event. This is accomplished by placing real time SS7 monitors on links at the Signal Transfer Points (STPs).
Information on exceeded Link Load, exceeded Message Signaling Unit (MSU) frequency and Network Management status/error conditions is passed to a Stage 1 controller or process. The Stage 1 process controls link monitors capable of monitoring upwards of 32 link monitors at a single STP. The monitors perform preliminary link analysis on error conditions. If the monitors identify trouble on any of the links, alarm information is sent to a Stage 2 controller or process via the Stage 1 process. The Stage 2 process controls all Stage 1 and associated monitors from an STP pair. If Stage 2 determines that there is an STP pair network trouble, it generates alarm and corrective action information and passes it to the Stage 3 controller or process. The Stage 3 process controls all Stage 2 controllers or processes in the operating company. If Stage 3 determines that there is potential or real company network trouble, it generates alarm and corrective action information and display signals on maintenance terminals in the company's SS7control center (SEAC, SCC, etc.). Stage 3 also alerts the Stage 4 controller process.
U.S. Pat. No. 5,592,530 issued to Brockman et al (Brockman) on Jan. 7, 1997 for Telephone Switch Dual Monitors, relates to testing and monitoring systems for evaluating the operations of telephone switches and more particularly to monitoring systems which are arranged to capture data between nodes of a telephone switching system where the data flows between mated nodes, as in an SS7 common channel signaling network. The Brockman Patent uses the term “telephone switches” to refer to service transfer points (STPs) in the SS7 network.
The patent indicates that an SS7 network can be thought of as a separate switching system which is used prior to, during, and at the end of calls for the purpose of routing control information. Whenever two switches or elements in the SS7 network have to pass call control information to one another during or prior to a phone call, they pass this data via the SS7 network. The patent describes an SS7 network as traditionally having three basic types of network node elements. These are listed as the Service Switching Point (SSP), which may be a central office, tandem or end office switch, a Service Control Point (SCP) , and a Signal Transfer Point (STP), which is described as essentially a packet switch which routes the messages from SSPs and SCPs to SSPs and SCPs.
The SS7 network is stated to be critical to operation of the telephone network and to require the deployment of “surveillance equipment to monitor the links connecting the nodes of the SS7 network.” The patent describes the topology of the SS7 network as such that STPs are deployed in a mated pair configuration at geographically separate locations. A set of SSPs and SCPs will be connected to a mated pair of STPs. This conglomeration of SSPs, SCPs, and mated pair STPs is called a cluster. Clusters are then connected by D-QUAD links between STP mated pairs.
The patent indicates that it is often the case that the messages going from switch A to switch B travel one route on the network, while the messages going from switch B to switch A travel a different route. The network surveillance equipment that monitors the link is designed to capture and correlate as much signaling information as possible regarding network activity. Because of the different paths that messages may take, data relating to a subscribers phone number may be all in one STP, or split partially in one STP and partially in the other STP of the mated pair “which may be in a different city.”
The patent postulates that what is needed is a “distributed state machine that can capture all of the SS7 messages within a mated pair cluster and correlate the fragmented SS7 messages pertaining to a particular call or transaction to a single data record.” The patent further states that what is needed is a filtering of redundant or unnecessary SS7 messages in order to compile call transaction records containing a minimum amount of essential data in order to evaluate overall system performance and to diagnose system errors when they occur.
The patent indicates that “the ability to capture all of the SS7 messages within a mated pair cluster and correlate the fragmented SS7 messages makes other improvements to telephone network services possible. In addition t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Network planning traffic measurement program does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Network planning traffic measurement program, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Network planning traffic measurement program will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2477757

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.