System and method for augmentation of surgery

Surgery – Diagnostic testing – Measuring anatomical characteristic or force applied to or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06231526

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to surgery and, more particularly, to a system and method for positioning, moving and locating surgical instruments for performing surgery on a patient.
2. Prior Art
Recent advances in medical imagining technology (CT, MRI, PET, etc.), coupled with advances in computer-based image processing and modelling capabilities have given physicians an unprecedented ability to visualize anatomical structures in live patients, and to use this information in diagnosis and treatment planning. The precision of image-based pre-surgical planning often greatly exceeds the precision of actual surgical execution. Precise surgical execution has been limited to procedures, such as brain biopsies, in which a suitable sterotactic frame is available. The inconvenience and restricted applicability of such a frame or device has led many researchers to explore the use of robotic devices to augment a surgeon's ability to perform geometrically precise tasks planned from computed tomography (CT) or other image data. The ultimate goal of this research is partnership between a man (the surgeon) and machines (computers and robots), that seeks to exploit the capabilities of both, to do a task better than either can do alone. Machines are very precise and untiring and can be equipped with any number of sensory feedback devices. Numerically controlled robots can move a surgical instrument through an exactly defined trajectory with precisely controlled forces. On the other hand, the surgeon is very dexterous. He is also quite strong, fast, and is highly trained to exploit a variety of tactile, visual, and other cues. “Judgementally” controlled, the surgeon understands what is going on in the surgery and uses his dexterity, senses, and experience to execute the procedure. However, the surgeon usually wants to be in control of everything that goes on. If the surgeon desires to increase precision within acceptable limits of time or with sufficient speed, he must be willing to rely on machines to provide the precision.
One potential problem with a robotic device is undesired motion. The most obvious way to prevent a robotic device from making an undesired motion is to make it incapable of moving of its own accord. Motor-less manipulators have been implemented in the past which use joint encoders to provide feedback to the surgeon on where his instruments are relative to his image-based surgical plan. European Patent Application 326,768A2 describes one such device. One important limitation of this approach is that it is often very difficult for a person to align a tool accurately in six degrees-of- freedom with only the use of positional feedback. Passive manipulators, permitting free motion until locked, have also been implemented in the past for limb positioning, tissue retraction, instrument holding, and other applications in which accuracy is not important. A three degree-of-freedom passive manipulation aid for prostate surgery has also been used clinically in the past.
In cases where only a single motion axis is required during the “in contact” phase of the surgery, a robot has been used in the past essentially as a motorized sterotactic frame. A passive tool guide is placed at the desired position and orientation relative to the patient. Brakes are applied and robot power is turned off before any instrument touches the patient. The surgeon provides whatever motive force is needed for the surgical instruments themselves and relies on his own tactile senses for further feedback in performing the operation. This approach ameliorates, but does not entirely eliminate, the safety issue raised by the presence of an actively powered robot in close proximity to to the patient and operating room personnel. Furthermore, maintaining accurate positioning is not always easy, since many robots tend to “sag” a bit when they are turned off or to “jump” when brakes are applied. Leaving power turned on and relying on the robot's servocontroller to maintain position introduces further safety exposures. Finally, this type of approach is limited to cases where a fixed passive guide suffices. The surgeon cannot execute a complex pre-computed trajectory by use of this approach, nor can he precisely relocate an instrument or body part from one place to another.
Over the past several years, researchers at IBM and the University of California at Davis developed an image-directed robotic system to augment the performance of human surgeons in precise bone machining procedures in orthopedic surgery, with cementless total hip replacement surgery as an initial application. This application inherently requires computer controlled motion of the robot's end-effector while it is in contact with the patient. Thus, considerable attention had to be paid to safety checking mechanisms. In-vitro experiments conducted with this system demonstrated an order of-magnitude improvement in implant fit and placement accuracy, compared to standard manual preparation techniques. A clinical trial on dogs needing hip replacement operations is presently underway.
It is the objective of the present invention to provide a new and improved system and method for augmentation of surgery.
SUMMARY OF THE INVENTION
The foregoing problems are overcome and other advantages are provided by a new and improved system and method for augmentation of surgery.
In accordance with one embodiment of the present invention, an apparatus for use in moving an end effector is provided. The apparatus comprises a first manipulator and a second manipulator. The first manipulator comprises a coarse motion manipulator and a fine motion manipulator. The second manipulator is connected to a distal end of the first manipulator. The second manipulator has means for providing orthogonally decoupled degrees of freedom with a common remote center-of-motion located at a work point some distance from the manipulator mechanism, means for selectively locking or releasing the separate degrees of freedom, and arranged so that small rotational realignments of an end effector connected to the end of the second manipulator can be provided without requiring large motions of any manipulator joint. This mechanism provides at least three orthogonally decoupled revolute degrees of freedom, together with additional linear degrees of freedom.
In accordance with another embodiment of the present invention, a system for manipulating movement of a surgical instrument is provided. The system comprises a mechanical positioner, a computer controlled brake, a computer, and means for signaling the computer. The mechanical positioner is adapted to have the surgical instrument connected thereto and comprises a plurality of members connected to each other in a series with at least one motion joint between two of the members. The computer controlled brake is located at the motion joint. The computer is connected to the brake for selectively actuating the brake upon an occurrence of a predetermined event. The means for signaling the computer can signal the computer of the occurrence of the predetermined event.
In accordance with another embodiment of the present invention, a system for assisting the surgeon in positioning a surgical instrument relative to a target position is provided. The system comprises means for manipulating the position of a surgical instrument, means for sensing the position of the surgical instrument, means for determining a path from a sensed position of the surgical instrument to the target position, and means for audibly signaling deviation of the position of the surgical instrument from the path.
In accordance with another embodiment of the present invention, a system for assisting a surgeon in positioning an article relative to a target position is provided. The system comprising means for determining a surgical plan based upon input patient information, means for sensing surgical execution of the surgical plan by the surgeon, means for advising the surgeon and means for automatically selecting different

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for augmentation of surgery does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for augmentation of surgery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for augmentation of surgery will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2476786

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.