Method for operating a fuel cell system and fuel cell system

Chemistry: electrical current producing apparatus – product – and – Having magnetic field feature

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S010000, C429S006000

Reexamination Certificate

active

06203935

ABSTRACT:

BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The invention relates to a method for operating a fuel cell system, and a fuel cell system.
It is known that, during the electrolysis of water, the water molecules are broken down by electric currents into hydrogen and oxygen. In a fuel cell, this process is reversed. During the electrochemical combination of water and hydrogen to form water, electric current is produced with a high efficiency and, if pure hydrogen is used as the combustion gas, the electrochemical combination is effected without the emission of pollutants or carbon dioxide. Even with technical combustion gases, such as natural gas or coal gas, and using air or air enriched with O
2
instead of pure oxygen, a fuel cell produces a considerably smaller amount of pollutants and less CO
2
than other energy producing devices which operate with fossil energy sources. The technical implementation of the principle of the fuel cell has led to widely differing solutions, with different types of electrolytes and with operating temperatures between 80° C. and 1000° C.
A fuel cell block, which is also called a “stack” in the technical literature, is, as a rule, composed of a number of fuel cells stacked on top of each other.
The moistening and compression of the process gases before they enter the fuel cell block is problematic, since the vaporization enthalpy for moistening must be provided. Apparatuses having a membrane moistening or water injection after compression, are for example known from German Patent DE 43 18 818.
In addition, International Application WO 97/10619 discloses a method for operating a fuel cell system having at least one fuel cell block, in which at least one operating agent/process gas for the fuel cell block is compressed by means of a liquid ring compressor. After compression, water is separated from the operating agent and is fed via a product water container to the cooling circuit of the fuel cell system.
A disadvantage of the methods known from the prior art is that a complex structure of the fuel cell system is required for performing various method steps, such as for example separating water from a process gas for the fuel cell block, and providing the cooling water for the fuel cell block and an operating liquid for the liquid ring compressor. In other words, a complex structure means that individual components have to be provided in the fuel cell system for the various method steps which results in a high financial outlay.
Furthermore, a relatively large number of components in the fuel cell system also increases the requirements for controlling and regulating the individual components.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a method for operating a fuel cell system, which overcomes the above-mentioned disadvantages of the heretofore-known methods of this general type and, in which the number of components required in the fuel cell system is reduced, and thus the costs for the fuel cell system is decreased while, at the same time, a method-relevant advantage is achieved. A further object of the invention is to provide a fuel cell system for carrying out the method of the invention.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method for operating a fuel cell system having at least one fuel cell block, the method which comprises:
compressing at least one operating agent for a fuel cell block with a liquid ring compressor;
separating, subsequently water from the operating agent in an apparatus for water separation;
cooling the fuel cell block with the water; and
feeding back, subsequently at least part of the water into the apparatus for water separation.
In accordance with another mode of the invention, at least part of a process water from the fuel cell block is used for cooling the fuel cell block.
With the objects of the invention in view, there is also provided a fuel cell system, comprising:
at least one fuel cell block;
at least one liquid ring compressor for compressing an operating agent for the fuel cell block;
an apparatus for water separation connected between the liquid ring compressor and the fuel cell block in a feed path for supplying the fuel cell block with the operating agent; and
a line provided between the fuel cell block and the apparatus, the line feeding at least part of the water, back into the apparatus after the water flows through the fuel cell block for cooling the fuel cell block.
In accordance with another feature of the invention, a process water separator is connected to the fuel cell block, and a further line for feeding process water from the process water separator into the apparatus for water separation is provided.
In accordance with yet another feature of the invention, a further line branches off from the line and opens into the liquid ring compressor for feeding part of the water into the liquid ring compressor.
A method for operating a fuel cell system having at least one fuel cell block in accordance with the invention is provided by at least one operating agent for the fuel cell block being compressed by a liquid ring compressor and, after compression, water being separated, in an apparatus for separating water from the operating agent, and being used to cool the fuel cell block, wherein, according to the invention, at least part of the water is fed back into the apparatus for separating water, after the cooling.
A fuel cell system in accordance with the invention has at least one fuel cell block and has at least one liquid ring compressor for compressing an operating agent for the fuel cell block, the fuel cell system has an apparatus for water separation provided between the liquid ring compressor and the fuel cell block in a feed path for supplying the fuel cell block with an operating agent, in which case, according to the invention, a line is provided between the fuel cell block and the apparatus for water separation, via which line part of the water is fed into the apparatus for water separation after flowing through the fuel cell block, in order to cool the fuel cell block.
In this fuel cell system for carrying out this method, an apparatus is thus used which simultaneously carries out two steps of the method, namely separating water from an operating agent for the fuel cell block after compression, and making water available for cooling the fuel cell block. Thus, in contrast to what is known from the prior art, there is no longer any need to use at least two apparatuses to carry out these two method steps. This reduces the number of components which form the fuel cell system, as a result of which the costs for the fuel cell system are also reduced. Furthermore, the control complexity for the fuel cell system is reduced, which also is an advantage of the method according to the invention.
The water for cooling the fuel cell block of the fuel cell system is preferably used, after flowing through the fuel cell block, to operate the liquid ring compressor. This measure ensures that the moistening of the operating agent for the fuel cell block is carried out at the operating temperature of the fuel cell block. This prevents the membranes in the fuel cell block from drying out. Furthermore, a dissipation of the reaction enthalpy from the water for cooling the fuel cell block is additionally carried out by vaporization during the moistening of the operating agent in the liquid ring compressor. Since the water for cooling the fuel cell block is used to operate the liquid ring compressor, such that water is provided by the apparatus for water separation, there is no need for any additional components for operating the fuel cell block.
In a further embodiment of the invention, after flowing through the fuel cell block, part of the water for cooling the fuel cell block is fed from the fuel cell block, via a line, into the liquid ring compressor. A further part of the water for cooling the fuel cell block is thus used to operate the liquid ring compressor.
Other features which are considered as characteri

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for operating a fuel cell system and fuel cell system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for operating a fuel cell system and fuel cell system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for operating a fuel cell system and fuel cell system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2475278

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.