Methods for treating mammals with modified alginates and...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06274566

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
This invention pertains to compositions, and methods of using the same, to protect mammals from, and treat mammals with diseases and conditions, mediated by various agents, including disease agents, heavy metals and other substances that can be bound by surface interaction with low molecule weight pectinates and alginates.
It is well known that gelling agents may be effective in binding to a variety of substances, in vitro. While high molecular weight binding substances are known, it is difficult for such substances to pass various blood barriers, including the gut, and circulate freely in the bloodstream. Their solubility in water is generally too low to permit in vivo utility of any kind.
Cancer metastasis is a stage of cancer which frequently marks conversion to an incurable disease. Most cancers share the ability to metastasize. This application has applicability to all metastatic cancers. In the metastatic process, cells depart from the primary tumor, invade the basement membrane, traverse the bloodstream as tumor cell emboli and interact with the vascular endothelium of the target organ. There, they proliferate to form secondary colonies. Kohn, Anti-Cancer Res., 13:2553-2259 (1993). It has been demonstrated that modified citrus pectin, administered orally, may be effective in suppressing or preventing metastases, by binding to residues on the cell surface, presumably through galactosyl residues in the modified (low molecular weight) pectin, perhaps through surface galectin-3. Pienta, et al., J. Nat. Cancer Inst. 87, 348-353 (1995).
Cancer is not the only inimical element circulating in mammalian blood streams, however, and in many cases, cancer is mediated by inorganic agents present. Thus, heavy metals and minerals, such as calcium, can induce arteriosclerosis, which is also influenced by the presence of cholesterol in the bloodstream. While there are a variety of treatments for elements such as heavy metals, typically, these embrace removal of portions of the blood supply, and treatment of the same.
Pectin, or pectinates, digestion products of pectin, are generically known as gelling agents, as are alginates. Alginates occur naturally, and a chief source is seaweeds. Alginates are formed by a mixture of polymannuronic acid and polyguluronic acid. Repeating sub-units are bound by glycosidic links at the 1a-4a-di-axial position (polyguluronic acid) while repeating sub-units of polymannuronic acid are bound by galactic links at the 1e-4e di-equatorial position. Like pectins, naturally occurring algins are high molecular weight products. They can, however, be reduced to low molecular weight products (defined herein as 40,000 daltons or less) by either chemical treatment (alkaline hydrolysis) or enzymatic degradation. Alginates generally have superior protein recovery rates when compared to pectinates of relatively similar molecular weight. Clare, Industrial Gums (1993 3
rd
Edition) and therefor exhibit a stronger ability than pectinates to bind with galectin 3, the carbohydrate binding protein on the surface of cancer cells.
A wide variety of seaweeds, which include algins, as well as the alginic constituent components, have been used in studies treating cancer. See, e.g., Itoh, Anti-Cancer Res. Sept.-Oct. (1995) and Kitasato, Archives of Exp. Med., 1987. In general, these studies and recommendations focus on various polysaccharide constituents such as fucoidan, which exhibits anti-tumor activity, but do not report the utility of alginates in preventing cell adhesion, or otherwise suppressing metastatic events. Low molecular weight alginates have been associated with the reduction of cholesterol in softdrinks, and alginate-coated sheets have been employed for the manufacture of a prototype artificial pancreas. Islet Medical, Feb., 1998. Transplants coated with alginates have also been used in the treatment of diabetes. There does not appear to be a report, however, of the use of low molecular weight alginates as opposed to pectins in the prevention or treatment of metastasis. Because of the superior recovery rate associated with alginates, it would be of value to be able to use alginates for this purpose.
Besides binding cancer cells, alginates are known to be effective metal binding compounds.
Accordingly, it remains an object of those of skill in the art to establish a method by which cancer metastasis can be prevented or reduced. It is also a goal of those of skill in the art to obtain a method for the treatment and/or removal of heavy metals, radioactive products and the like, without removal of part or all of the blood supply of a patient. It is an additional object of those of skill in the art to find a safe and effective treatment for high circulating values of calcium and other minerals which contribute calcium deposits such as calcinosis (large calcium deposits present in auto-immune condition like dermatomiositis) as well as treating atherosclerosis. A further object of those of skill in the art is to provide a method for treating arteriosclerosis with reduced side effects.
SUMMARY OF THE INVENTION
The above objects, and other objects that are made clear by the discussion below, are met by the oral or intravenous administration of modified alginates, modified pectins, or a combination of both, alone or together with promoter compounds.
For the treatment or prevention of metastases, modified alginates (herein, modified alginates and modified pectinates refer to low molecular weight products, no more than 40,000 daltons, obtained by hydrolysis or digestion of algin or pectin). Alginates may be distinguished from pectinates which have galactose residues known to show high affinity for galectins (a carbohydrate binding protein) which are exhibited on the surface of cell emboli.
In addition to the treatment of metastatic cancer, low molecular weight algins and low molecular weight pectins can be used in chelation therapy, that is, administration to bind heavy metals, toxins and calcium. While these potential poisons (including mercury, lead, arsenic, radioactive materials and others) can be chelated in the intestine, the method is also effective to chelate heavy metals circulating in the bloodstream. The chelation of calcium, as well as cholesterol binding, is effective in the treatment of arteriosclerosis. Methods for modifying pectins to obtain low molecular weight pectinates are known to those of skill in the art and can be obtained from commercial sources. See, e.g., Pienta. et al. Modified alginates are produced by a similar method, either through alkaline hydrolysis or enzymatic degradation using alginate lyase. The final modified alginate or pectinate must be water soluble, and of a molecular weight of 40,000 daltons or below. It may be combined with pharmaceutically acceptable carriers suitable for oral or intravenous administration, depending on the treatment method desired. Dosage levels will vary from 5-1500 mg per kg of body weight, per day, and may be sustained over a prolonged period. A preferred range may be 10 mg/kg/day to 1,000 mg/kg/day.


REFERENCES:
patent: 61064701 (1993-09-01), None
patent: 09235234 (1997-09-01), None
Kimura et al., J. Ethnopharmacol., 54(1), 47-54 (abstract), Oct. 1996.*
Pienta et al., Journal of the National Cancer Institute, 87(5), pp. 348-353, Mar. 1, 1995.*
Pharmaceutical Evulation of Ibuprofen Fast-Absorbed Syrup Containing Low Molecular-weight Gelatin, J. Pharm Sci. 1992, Feb; 81(2):141-4, S. Kimura, et al. (abstract).
Chitosans as Absorption Enhancers for Poorly Absorbable Drugs. 1: Influence of Molecular Weight and Degree of Acetylation on Drug Transport Across Human Intestinal Epithelial (Caco-2) Cells; Pharm Res. 1996 Nov;13(11):1686-92, N.G. Schipper, et al. (Abstract).
Validation of Polyethylene Glycol 3350 as a Poorly Absorable Marker for Intestinal Perfusion STudies; Dig. Dis. Sci. 1997 Jan; 42(1):1-5; L.R. Schiller, et al. (abstract).
Absorption Enhancement in Intestinal Epithelial Caco=2 Monolayers by Sodium Captrate: Assessment of Molecular Weight Depen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for treating mammals with modified alginates and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for treating mammals with modified alginates and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for treating mammals with modified alginates and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2474616

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.