Catalyst – solid sorbent – or support therefor: product or process – Regenerating or rehabilitating catalyst or sorbent – Gas or vapor treating
Utility Patent
1999-04-20
2001-01-02
Dunn, Tom (Department: 1754)
Catalyst, solid sorbent, or support therefor: product or process
Regenerating or rehabilitating catalyst or sorbent
Gas or vapor treating
C502S034000, C502S051000, C502S053000, C502S056000
Utility Patent
active
06169050
ABSTRACT:
FIELD OF THE INVENTION
The subject of the present invention is a process for the regeneration of catalysts of titanium silicalite type, which catalysts are used in particular in reactions between a peroxide compound, in particular hydrogen peroxide, and an organic coreactant.
BACKGROUND OF THE INVENTION
It is known to use a titanium silicalite as catalyst, in particular in oxidation reactions of saturated hydrocarbons in order to form alcohols or ketones, as described in European Patent Application EP-A-376,453, or in epoxydation reactions of olefins, as described in Patent Application EP-A-100,119, or alternatively in hydroxylation reactions of aromatic compounds, as reported in Application EP-A-200,260.
However, the activity of these catalysts rapidly falls. It consequently seems essential to have available a means for regenerating them in order to be able to use them repeatedly.
Patent Application JP 03/114536 describes a process for the regeneration of catalysts of titanium silicalite type by calcination under air at a temperature of 400 to 500° C. It is specified therein that a calcination at a temperature of less than 400° C. is insufficient for recovery of the initial catalytic activity of the catalyst.
SUMMARY OF THE INVENTION
The aim of the present invention is to provide a process for the regeneration of catalysts of titanium silicalite type which is more efficient than the known process and which can consequently be employed at a lower temperature.
The invention consequently relates to a process for the regeneration of a catalyst of titanium silicalite type comprising a heat treatment, which is characterized in that, during the heat treatment, the catalyst is stripped, at a temperature of at least 130° C., by a gas stream, the mass residence time of which on the catalyst does not exceed 2 hours.
By definition, the mass residence time of the gas stream on the catalyst is the ratio of the weight of catalyst to be regenerated to the mass flow rate of the gas stream. According to the invention, the mass residence time does not exceed 2 hours. Most often, it does not exceed 1 hour. Residence times of less than one minute can be envisaged. However, for practical reasons, the operation is generally carried out with a residence time of at least one minute. A mass residence time of 2 to 30 minutes has proved to be particularly advantageous.
The gas stream stripping the catalyst can contain any inert gas, such as nitrogen or helium. It can also contain an oxidizing gas, in particular oxygen. It can also contain steam. Preferably, the gas stream contains at least one compound chosen from nitrogen, oxygen and water.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The catalysts of titanium silicalite type to which the regeneration process according to the invention is applied are crystalline synthetic materials with a structure analogous to that of zeolites, comprising titanium and silicon oxides and characterized by an infrared absorption band at approximately 950-960 cm
−1
. Their general formula is typically:
x
TiO
2
(1-
x
)SiO
2
in which x is between 0.0001 and 0.5, preferably between 0.001 and 0.05.
Materials of this type, known under the name of TS-1, exhibit a microporous crystalline zeolite structure analogous to that of zeolite ZSM-5. The properties and the main applications of these compounds are known (B. Notari; Structure-Activity and Selectivity Relationship in Heterogeneous Catalysis; R. K. Grasselli and A. W. Sleight Editors; Elsevier; 1991; p. 243-256). Their synthesis has also been widely studied (A. Van der Poel and J. Van Hooff, Applied Catalysis A; 1992; volume 92, pages 93-111). Other materials of this type have a structure analogous to that of beta-zeolite, zeolite ZSM-11 or zeolite MCM-41.
The heat treatment of the catalyst is generally carried out at a temperature of at least 150° C. A treatment temperature of at least 175° C. is preferred. Although the regeneration heat treatment according to the invention can be implemented up to a temperature of approximately 550° C., very good results can be obtained at a temperature of less than 400° C. In the presence of a substantial amount of water in the gas stream (at least 0.01 molar %), the process according to the invention provides excellent regeneration at a temperature of 175 to 250° C. The temperature is particularly from 180 to 220° C. In the substantial absence of steam in the gas stream, that is to say when the amount of water in the gas stream is less than 0.01 molar %, very good results have been obtained at a temperature of 250 to 350° C.
The optimum duration of the heat treatment depends on the state of deactivation of the catalyst to be regenerated. It is generally at least 30 minutes, preferably at least 1 hour. Most often, it does not exceed 20 hours. Good results have been obtained with a duration of treatment of 2 to 8 hours.
The heat treatment of the catalyst in the regeneration process according to the invention can be carried out by any appropriate means which produces stripping of the catalyst by the gas stream. It is possible, for example, to carry out the heat treatment in a rotary furnace equipped with a gas stripping system or in a stationary-bed or fluidized-bed reactor.
In a particularly preferred embodiment, the gas stream stripping the catalyst contains oxygen. In this embodiment, the oxygen content in the gas stream is at least 1 molar %. Preferably, it is at least 5 molar %. Although it is possible, in theory, to operate with a gas stream composed essentially of oxygen, the operation is usually carried out with a gas stream not containing more than 30 molar % of oxygen. The balance of the gas stream is then composed of other gases, such as nitrogen or steam. Excellent results have been obtained in the case where the gas stream is air.
In another particularly preferred embodiment, the gas stream stripping the catalyst contains a substantial amount of steam. In this embodiment, the water content in the gas stream is at least 0.01 molar %. Preferably, it is at least 0.05 molar %. It is possible to operate with a gas stream composed essentially of steam. However, excellent results are obtained with a gas stream containing less than 10 molar % of water. The balance of the gas stream is then composed of other gases, such as nitrogen or oxygen.
In an advantageous alternative form of this preferred embodiment, the gas stream stripping the catalyst contains oxygen, in addition to steam. Generally, the gas stream is composed essentially of moist air containing from 0.01 to 50 molar % of water. Advantageously, the gas stream is composed essentially of moist air containing from 0.01 to 10 molar % of water.
In an embodiment of the regeneration process according to the invention, the heat treatment is preceded by an operation in which the catalyst is washed with water or with an organic compound (which is preferably an alcohol, methanol being particularly preferred), in order to remove substantially all the compounds with which the catalyst was in contact in the reaction in which it was employed. The temperature of the washing liquid is generally between 25° C. and the boiling temperature of the washing liquid. This washing operation is carried out by bringing the catalyst into contact with water or with the organic compound for one or more periods of 5 minutes to 2 hours.
In an embodiment of the regeneration process according to the invention, the catalyst is subjected, before the heat treatment, to an operation in which it is stripped with an inert gas, usually nitrogen, at a temperature of 50 to 100° C. for a period of 10 minutes to 1 hour. The function of stripping the catalyst is to remove the volatile impurities from the catalyst.
In an alternative form, the catalyst can be subjected to the abovementioned washing and stripping operations.
The process according to the invention makes it possible repeatedly to restore virtually all the initial activity of the catalyst.
The process according to the invention applies to spent catalysts of titanium silicalite type, in particular thos
Catinat Jean-Pierre
Strebelle Michel
Dunn Tom
Larson & Taylor PLC
Nguyen Cam N.
Solvay ( Societe Anonyme)
LandOfFree
Process for regeneration of catalysts of titanium silicalite... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for regeneration of catalysts of titanium silicalite..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for regeneration of catalysts of titanium silicalite... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2473319