Demodulators – Phase shift keying or quadrature amplitude demodulator
Reexamination Certificate
2000-01-20
2001-06-26
Mis, David (Department: 2817)
Demodulators
Phase shift keying or quadrature amplitude demodulator
C329S313000, C375S324000, C375S329000, C375S340000
Reexamination Certificate
active
06252453
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to network interfacing, and more particularly, to a device and method for signal resampling between phase related clocks.
BACKGROUND OF THE INVENTION
The transmission of various types of digital data between computers continues to grow in importance. The predominant method of transmitting such digital data includes coding the digital data into a low frequency base data signal and modulating the base data signal onto a high frequency carrier signal. The high frequency carrier signal is then transmitted across a network cable medium, via RF signal, modulated illumination, or other network medium, to a remote computing station.
At the remote computing station, the high frequency carrier signal must be received and demodulated to recover the original base data signal. In the absence of any distortion of the carrier signal across the network medium, the received carrier would be identical in phase, amplitude, and frequency to the transmitted carrier and could be demodulated using known mixing techniques to recover the base data signal. The base data signal could then be recovered into digital data using known sampling algorithms.
However, the network topology tends to distort the high frequency carrier signal due to numerous branch connections and different lengths of such branches causing numerous reflections of the transmitted carrier. The high frequency carrier is further distorted by spurious noise caused by electrical devices operating in close proximity to the cable medium. Such problems are even more apparent in a network which uses home telephone wiring cables as the network cable medium because the numerous branches and connections are typically designed for transmission of plain old telephone system POTS signals in the 0.3-3.4 kilohertz frequency and are not designed for transmission of high frequency carrier signals on the order of 7 Megahertz. Further yet, the high frequency carrier signal is further distorted by turn-on transients due to on-hook and off-hook noise pulses of the POTS utilizing the network cables.
Such distortion of frequency, amplitude, and phase of the high frequency carrier signal degrades network performance and tends to impede the design of higher data rate networks and challenges designers to continually improve modulation techniques and data recovery techniques to improve data rates. For example, under the HPNA 1.0 standard, a 1 Mbit data rate is achieved using pulse position modulation (PPM) of a carrier, while the more recent 2.0 standard achieves a 10 Mbit data rate using a complex modulation scheme utilizing a frequency diverse quadrature amplitude modulation (QAM).
A problem associated with advancing standards and increasing data rates is that, as in the HPNA example, the modulation techniques are not the same. As such, backwards compatibility is not inherent in the design of the newer systems. For example, in the HPNA system, to be backwards compatible, the newer 2.0 receiver must be able to demodulate both the (PPM) modulated carrier compliant with the 1.0 standard and the frequency diverse QAM modulated carrier compliant with the 2.0 standard. As such, many of the functions in the receiver must be implemented in two distinct circuits, one circuit for the PPM and one circuit for the QAM, thereby increasing the cost and complexity of the receiver.
For example, receivers typically include an A/D converter for sampling the modulated carrier signal and generating a series occurring at a sample frequency. The series of samples are input to the remainder of the receiver circuitry that is typically implemented on a digital signal processor (DSP).
The complexity of the mathematics performed by the DSP is a function of various parameters including the sample frequency. The complexity of the mathematics also affects gate count and thus the size and cost of the DSP. As such, for a particular carrier modulation specification, the A/D sample frequency can be selected to minimize DSP gate count to reduce the DSP size and cost.
The problem exists in that the optimal sample frequency for one carrier modulation specification may not equal the optimal sample frequency for a second carrier modulation specification thereby requiring two A/D converters. Therefore, based on recognized industry goals for size and cost reductions, what is needed is a device and method for obtaining a series of samples representing a modulated carrier at two different sample frequencies but not requiring two AID converts and/or two clocks.
SUMMARY OF THE INVENTION
A first object of the present invention is to provide a circuit comprising a demodulation circuit receiving a series of sample values representing a modulated carrier and generating a first series of sample values representing a base band data signal, the first series of sample data values occurring at a first sampling rate; and a resampler receiving the first series of sample values and generating a second series of sample values representing the base band data signal, the second series of sample data values occurring at a second sampling rate, the second sampling rate being a lower frequency than the first sampling rate.
The circuit may further comprise a second demodulation circuit receiving the series of sample values representing a modulated carrier and generating a series of second channel base band sample values representing a second channel base band data signal, the second channel base band sample values occurring at the first sampling rate.
The resampler may calculate each sample value in the second series of sample values from at least one value in the first series of sample values. The second series of sample values may include a plurality of in phase values and a plurality of out of phase values, each of the in phase values being equal to a simultaneously occurring value in the first series of sample values and each out of phase values being calculated from a sample value in the first series of sample values preceding the out of phase value and a sample value in the first series of samples values following the out of phase value.
The calculation may be a linear interpolation between the sample value in the first series of sample values preceding the out of phase value and the sample value in the first series of samples values following the out of phase value. The linear interpolation may be performed in a circuit utilizing a first multiplier multiplying the sample value in the first series of sample values following the out of phase value by a first coefficient and a second multiplier multiplying the sample value in the first series of sample values preceding the out of phase value by a second coefficient, the second coefficient being equal to one minus the first coefficient, and an adder adding a product of the first multiplier to a product of the second multiplier to generate the out of phase value. The modulated carrier may be at least one of a pulse position modulated carrier and a quadrature amplitude modulated carrier and first sampling rate may be 32 Mhz, the second sampling rate may be 30 Mhz, and a ratio of in phase values to out of phase values may be 1:15.
A second objective of the present invention is to provide a method of recovering data from a modulated carrier, comprising: a) sampling the modulated carrier with an A/D converter to generate a first series of modulated carrier sample values representing the modulated carrier, the modulated carrier sample data values occurring at a first sampling rate greater than four times a frequency of the modulated carrier; b) demodulating the series of modulated carrier sample values to generate a first series of sample data values representing a base band data signal, the sample values representing the base band data signal occurring at the first sampling frequency; and c) generating a second series of sample data values representing the base band data signal, the second series of sample data values occurring at a second sampling rate, the second sampling rate having a lower frequency than the first
Advanced Micro Devices , Inc.
Mis David
Renner Otto Boisselle & Sklar
LandOfFree
Device and method for signal resampling between phase... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device and method for signal resampling between phase..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for signal resampling between phase... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2472492