Self-repairing, reinforced matrix materials

Compositions: coating or plastic – Coating or plastic compositions – Inorganic settable ingredient containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C106S711000, C106S724000, C106S729000, C106S823000, C106S802000, C106S805000, C106S676000, C106S819000, C501S095100, C075S300000, C428S320200, C428S321100, C428S321500, C523S218000, C523S219000

Reexamination Certificate

active

06261360

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention generally relates to matrix materials for use in a wide variety of end use fields and applications. More particularly, the invention relates to new and improved self-repairing, settable or curable matrix material systems containing so-called smart-release fiber reinforcements, alone or in combination with other reinforcement. My prior parent application, Ser. No. 540,191, filed Jun. 19, 1990, describes the new and improved inorganic and organic matrix composites employing concrete matrix systems and asphalt matrix systems as illustrative embodiments. That prior application describes smart-release hollow fiber additives in settable construction materials and thermoplastic matrices, such as asphalt. This application is being filed to describe other embodiments of the smart-release matrix composite materials generally described in my earlier application and to provide additional examples of end use applications to which these new and improved compositions, articles and methods may be specially adapted and used.
Cement is a fine, gray powder consisting of alumina, lime, silica and iron oxide which sets to a hard material after mixture with water. Cement, along with sand and stone aggregate, make up concrete, the most widely used building material in the world. Steel reinforcing bars (rebars) are commonly added to the interior of concrete for additional strength.
There are many reasons for the popularity of concrete. It is relatively inexpensive, capable of taking on the shape of a mold, has exceptionally high compression strength and is very durable when not exposed to repeated freeze-thaw cycles. However, as a building or construction material, concrete, whether it is reinforced or not, is not without some shortcomings. One major drawback of concrete is that it is relatively low in tensile strength. In other words, it has little ability to bend. Concrete also has little impact resistance and is frequently brittle. A third major drawback is that its durability is significantly reduced when it is used in applications which require it to be exposed to repeated freeze-thaw cycles in the presence of water. Concrete is relatively porous and water is able to permeate the material. Freezing and thawing with the accompanying expansion and contraction of the water, forms cracks in the concrete. Furthermore, if salt is also present in the environment, it dissolves in the water and permeates into the concrete where it is capable of inducing corrosion in any of the rebars or other metallic reinforcements present.
Various techniques have been suggested in the past for overcoming these drawbacks. The addition of fibers to concrete has improved its tensile strength but has decreased its compression strength. Providing exterior coatings on the outer surfaces of the concrete has reduced water permeation, but it is a time-consuming additional step and has little, if any, effect on the lasting strength of the concrete. The addition of modifying agents as freely-mixed additives into a concrete mixture before setting has also been tried. These efforts have met with generally unsatisfactory results. Attempts to add modifying agents in the form of micronodules or prills have also been tried. Frequently, the prills are designed to be heat melted to cause release of the modifying agent into the matrix after setting of the materials. These designs require the application of heat to release the beneficial additive into the matrix after cure. Moreover, the melted, permeated agents leave behind voids in the concrete which weakens the overall structure under load. Accordingly, a demand still exists for an improved concrete matrix material having greater tensile strength, greater durability and comparable or improved compression strength.
In addition to cementitious building materials, the use of polymer composites as structural materials has grown tremendously in recent years. Polymer composite materials have advantages over steel or concrete including good durability, vibration damping, energy absorption, electromagnetic transparency, toughness, control of stiffness, high stiffness to weight ratios, lower overall weight and lower transportation cost. These polymer matrix materials comprise a continuous polymer phase with a fiber reinforcement therein. Some polymer composite materials are three times stronger than steel and five times lighter. They have heretofore been generally more expensive but their use may, in the long term, be economical because of their greatly reduced life cycle costs. Europeans have made bridges completely of specialty polymer matrix composite materials. The polymer composite materials may be used as rebars, tensioning cables, in bonded sheets, wraps, decks, supports, beams or as the primary structures for bridges, decks or buildings. Structures made from polymer matrix materials are specially effective in aggressive environments or are well adapted for building structures where electromagnetic transparency may be needed for highways, radar installations and hospitals.
As used herein, matrix composite materials may refer to generally any continuous matrix phase whether it comprises a settable construction material such as cementitious materials or a thermoplastic material such as asphalt materials, as well as, other synthetic or natural high polymer materials, ceramics, metals and other alloy materials. The matrix composite materials include various fiber reinforcements therein distributed throughout the matrix or placed at desired locations within the continuous phase. The matrix composite materials may be fabricated as large building structures and load bearing shaped articles, or they may be molded or machined as small parts for specialty uses. For example, the matrix material may comprise a thin sheet or web of material in the form of a foil, wrap, tape, patch or in strip form. As presently used in this specification, the term matrix composite material does not necessarily refer to large civil engineering structures such as highways and bridges.
In connection with the polymer and/or metal or ceramic matrix composite materials, as well as, in the settable building materials such as concrete materials, special problems cause structures made from these materials to become aged or damaged in use. More particularly, special structural defects arise in use including microcracking, fiber debonding, matrix delamination, fiber breakage, and fiber corrosion, to name but a few. Any one of these microscopic and macroscopic phenomena may lead to failures which alter the strength, stiffness, dimensional stability and life span of the materials. Microcracks, for example, may lead to major structural damage and environmental degradation. The microcracks may grow into larger cracks with time and cause overall material fatigue so that the material deteriorates in long-term use.
Advanced matrix composites used in structural applications are susceptible to damage on both the macro- and microscopic levels. Typical macroscopic damage to composite laminates involves delaminations and destruction of the material due to impact. On the micrographic scale, damage usually involves matrix microcracking and/or debonding at the fiber/matrix interface. Internal damage such as matrix microcracking alters the mechanical properties of shaped articles made therefrom such as strength, stiffness and dimensional stability depending on the material type and the laminate structure. Thermal, electrical and acoustical properties such as conductance, resistance and attenuation have also been shown to change as matrix cracks initiate. Microcracks act as sites for environmental degradation as well as for nucleation of microcracks. Thus, microcracks can ultimately lead to overall material degradation and reduced performance.
Moreover, prior studies have shown that microcracks cause both fiber and matrix dominated properties of the overall composite to be effected. Fiber dominated properties such as tensile strength and fatigue life may be reduced due to redistribution of loads

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Self-repairing, reinforced matrix materials does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Self-repairing, reinforced matrix materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Self-repairing, reinforced matrix materials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2470134

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.