Device for external fixation of a fractured radius

Surgery – Instruments – Orthopedic instrumentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S057000

Reexamination Certificate

active

06197027

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to clamping pins within devices for external fixation of fractured bones, and, more particularly, to an external fixture in which pins are clamped for fixation of a fractured radius.
2. Background Information
The fracture of the distal radius is one of the most common human fractures, occurring in as many as 350,000 people per year in the United States alone. The conventional processes both for reducing such a fracture and for maintaining the bones in proper alignment during the subsequent healing process involves applying and maintaining an extension force across the fracture, with ligamental taxis being relied upon to hold the bones in place. The process for treating a fractured distal radius is described in the 1901 edition of
Gray's Anatomy
in the following manner, “The treatment consists of flexing the forearm, and making a powerful extension from the wrist and elbow, depressing at the same time the radial side of the hand, and retaining the parts in that position by well-padded pistol-shaped splints.”
A common method for the treatment of a fractured distal radius involves the use of standard immobilizing cast techniques, preventing movement of the radiocarpal joint throughout the course of rehabilitation. A problem with this method is that it sometimes results in inadequate internal fixation, which can cause deformity, pain, and prolonged disability.
The process of external pin fixation is often used in the repair of a fractured distal radius. This process initially involves the surgical insertion of skeletal traction pins on both sides of the fracture, with a frame being connected to the pins for immobilizing the bones, and for holding them together until the fracture is mended. Conventional methods for applying external pin fixation for the treatment of a fractured distal radius provide for the immobilization of the radiocarpal joint, so that the hand cannot be flexed. Examples of frames used in this way are found in U.S. Pat. Nos. 4,554,915 and 5,545,162. Each of these frames rigidly but adjustably connects a pair of pins extending into the metacarpal bones with a pair of pins extending into the radius on the proximal side of the fracture. While this type of fixation often provides an improvement over conventional casting techniques in the management of severe fractures of the distal radius, immobilization of the radiocarpal joint during the treatment period typically results in a long period of stiffness and disability after the external fixation device is removed. Typically the external fixation device is left in place during the healing process for six to eight weeks. After the fixation device is removed, three to six months are required for the patient to regain motion of his hand. Thus, what is needed is a fixation device providing adequate fixation during the healing process while allowing flexure in the radiocarpal joint.
A fractured distal radius may alternately be repaired using a permanently installed fixation plate with screws and blades extending into the radius and into the broken-away fragment, as described, for example, in U.S. Pat. No. 5,006,120. What is needed is a method for combining the benefit of this method for installing an internal fixation plate, in terms of early flexure of the hand at the radiocarpal joint, with the benefit of the relatively simple surgical procedures of external pin fixation.
U.S. Pat. No. 4,747,400 describes an external fixation frame including a proximal carriage on one end and a distal carriage on the other end. The proximal carriage is adapted to mount pins inserted into the proximal bone segment, and is supported on the frame by support arms which are movable with respect to the frame. The distal carriage includes a clamping member, adapted to mount pins inserted in the distal bone segment, which is pivotal about the fracture to permit precise alignment of the distal and proximal bone segments. A fragment support, mounted to one of the side rails of the support arm for the proximal carriage, is adapted to clamp a pin inserted within a central fragment positioned between the proximal and distal segments of a comminuted fracture.
The external fixation frame of U.S. Pat. No. 4,747,400 is a general purpose device for dealing with fractures of long bones, such as the femur, tibia, humerus, ulna, and tibia, as well as the radius. Since fractures of the distal radius are particularly common, what is needed is an external fixation device configured particularly for the treatment of such fractures, without the bulk, weight, and complexity of a general purpose device.
SUMMARY OF THE INVENTION
According to one aspect of the present invention, there is provided apparatus for clamping an external fixation pin within a fixation device. The pin extends inwardly from the fixation device for attachment within bone and outwardly for attachment to a rotary driving device. The apparatus includes a pilot hole and an internally threaded hole within the fixation device, along with a flexible sleeve and a clamping nut. The pin extends through the pilot hole and through holes within the flexible sleeve and the clamping nut. The clamping nut includes an externally threaded section engaging the internally threaded hole. Turning the clamping nut to move the clamping nut inward compresses the flexible sleeve in a direction parallel to a longitudinal axis of the flexible sleeve, so that the flexible sleeve expands transversely to clamp around the pin and to clamp within the internally threaded hole.
According to another aspect of the present invention, there is provided apparatus for the external fixation of a fractured distal radius. The apparatus includes a plate, first and second pluralities of pin mounting holes, and first and second pluralities of pins. The first plurality of pin mounting holes extend in a line within the plate for securing pins in the shaft portion of the radius. The second plurality of pin mounting holes extend in a two-dimensional array for securing pins in a fragment of the fractured distal radius. The first plurality of pins individually extend within various of the pin mounting holes within the first plurality of pin mounting holes, while the second plurality of pins individually extend within various of the pin mounting holes within the second plurality of pin mounting holes. Each pin extends in a first direction from the plate for attachment within bone.


REFERENCES:
patent: 4554915 (1985-11-01), Brumfield
patent: 4662365 (1987-05-01), Gotzen et al.
patent: 4714076 (1987-12-01), Comte et al.
patent: 4747400 (1988-05-01), Koeneman et al.
patent: 4867144 (1989-09-01), Karas et al.
patent: 5006120 (1991-04-01), Carter
patent: 5015248 (1991-05-01), Burstein et al.
patent: 5197966 (1993-03-01), Sommerkamp
patent: 5545162 (1996-08-01), Huebner
patent: 5586985 (1996-12-01), Putnam et al.
patent: 5741251 (1998-04-01), Benoist
patent: 5749872 (1998-05-01), Kyle et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for external fixation of a fractured radius does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for external fixation of a fractured radius, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for external fixation of a fractured radius will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2469427

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.