Ultrasound and laser face-lift and bulbous lysing device

Surgery – Instruments – Light application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S022000

Reexamination Certificate

active

06203540

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a device and method for contracting and tightening dermal or fibrous containing tissues of living beings. The device projects ultrasound to lyse through the internal tissue layers and lasers to irradiate the internal tissue. The method utilizes the device to enter the tissue through a small incision that may be less than 1 centimeter in length to lyse through the tissue layers, irradiate the internal dermal tissue and thereby cause contraction and tightening of the tissues.
BACKGROUND OF THE INVENTION
Traditionally, face-lifts are performed by surgically cutting and removing portions of the skin. In the subcutaneous tissue layer, where the fat joins the dermis, there are few nerves and there are only occasional blood vessels connecting the fat to the dermis. In the face, most of the blood flow moves horizontally as opposed to the other regions of the body where the blood flow moves vertically up into the dermis from the fat. This important fact of lateral blood flow allows the performance of a face-lift by cutting completely around the ear and separating the tissue out toward the mouth and lower neck and temporal regions.
No matter in what layer the fact-lift is performed, once sufficient tissues have been freed, stretched and pulled back toward the ear, excess tissue is then cut out with scissors or scalpel. The first reason a face-lift is successful is that the deeper tissues and surface tissues are freed and the tissues are then affixed to each other or other structures in order to tighten the tissues below the surface and indirectly on the surface. Secondly, surface tightening occurs when the tissue edges that remain following the removal of tissue are cut and sewn around the ear. Thirdly, tissue tightening occurs because of the trauma that occurs to most tissues during the entire procedure.
Whenever trauma occurs to tissue, scar tissue or fibrosis tissue is created. Scar/fibrous tissues have contractile elements in them, similar to miniature muscles. The key is to create the proper damage so that fibrous-tissue tightening may occur, but destruction, full thickness loss of tissue and overt scarification does not occur.
Improvements to the appearance of the epidermis also has been accomplished by use of lasers. Traditional laser resurfacing involves application of a Carbon Dioxide Laser on the epidermis destroying the epidermis and displaying the outer surface of the dermis. Erbium Yag Lasers are also used to tighten the skin and destroy the surface but do not cause as much thermal damage as Carbon Dioxide Lasers.
In the laser resurfacing procedure, superficial, medium, and relatively deep destruction methods are used depending upon the amount of resurfacing that a patient needs. Patients with mild sun damage may use superficial laser resurfacing procedures because most of the damage is near the top surface of the skin. Therefore, a high degree of concentration and destruction is not required. Patients with moderate or severe sun damage require relatively deeper laser resurfacing procedures, chemical peels or dermabrasion.
Laser resurfacing works very similarly to chemical peel or dermabrasion in that the surface of the skin is destroyed and new collagen is created. Epidermal elements, which coat the very surface of the skin, arise out of the hair pores. Too much destruction of the skin and too much destruction in general may destroy the hair pores and the ability of the skin to repopulate itself at the surface, which may lead to scarring. Scar tissue is fibrous tissue. Fibrous tissue makes up the bulk of the dermis, which is the “leather layer” of the skin. Whenever scar tissue is formed, these tissues in general contract.
The concept of the current invention by resurfacing skin from the “inside-out” was developed because of the nature of contraction observed when the interior or underside of the dermis tissue is damaged or altered by laser. The current invention projects laser beams on the interior surface of the dermis, which is the surface of the dermis that usually adjoins the subcutaneous fat tissue. The laser energy causes scarring and consequent contraction of the dermis.
The best age of the patient population suited to this invention are those without tremendous excess lack skin that would need to be cut out and thrown away during a traditional face-lift procedure. Patients that would benefit from this type of approach generally would be between the ages of 35 and 55.
Description of Prior Art
The use of ultrasonic medical therapy is well known in the art. Richards et al., U.S. Pat. No. 3,735,756, which is incorporated herein by reference, teaches such an ultrasonic use.
The term “laser” is an acronym for Light Amplification by Stimulated Emission of Radiation. As used herein, the term is meant to encompass a device which utilizes the principle of amplification of electromagnetic waves by stimulation emission of radiation to produce coherent radiation in the infrared, visible or ultraviolet region. Such radiation has been used in external medical applications, such as for cauterizing, for attaching detached retinas and for removing various skin cancers.
Zavislan et al., U.S. Pat. No. 5,653,706, which is incorporated herein by reference, teaches the use of laser energy for treatment of various sites under the skin. However, according to Zavislan, the interior sites are reached by projecting laser beams from outside the body through the epidermis, to the interior location.
Similarly, Karni, U.S. Pat. No. 5,655,547, which is incorporated herein by reference, teaches the use of lasers from a location exterior to the body to treat a location of the interior body.
Directing coherent radiation from a laser at a target is a well known method for precisely cutting that target by ablating or vaporizing a portion of it. When the target is living biological tissue, the dynamic nature of the target poses special problems. For example, fluids such as blood may flow into the area of the cut, obscuring that area and absorbing part of the energy that otherwise would go into ablating the target.
This problem can be mitigated by directing beams of coherent radiation of two or more wavelengths at the tissue, one beam to ablate the tissue and other to perform some other action, such as coagulating small blood vessels to prevent inflow of blood. For example, Freiberg, in U.S. Pat. No. 5,139,494, which is incorporated by reference for our purposes as if fully set forth herein, advocates using radiation in a range of wavelengths between about 0.1 and about 0.3 microns, and between about 2.0 and about 12.0 microns, for ablative cutting, and radiation in a range of wavelengths between about 0.3 microns and about 2.0 microns for coagulation. These beams of coherent radiation are directed coaxially at the tissue to be cut. Suitable means for combining laser beams coaxially are well known in the art. One such means is disclosed by Nakajima in U.S. Pat. No. 4,408,602. Another is disclosed by Jako in U.S. Pat. No. 4,503,854. Both of these patents are herein incorporated by reference for all purposes as if fully set forth herein.
Among the surgical procedures, to which laser surgery may be applied are skin resurfacing and hair implantation. In skin resurfacing, the upper layer of skin is ablated by a first laser beam while the underlying collagen is heated and shrunk by a second laser beam. In hair implantation, the accuracy of the drilling of holes of the implantation of new hair using a first beam is enhanced by the use of a second laser beam to coagulate small blood vessels and prevent inflow of blood. Both of these procedures are very delicate and require precise selection and control of the wavelengths, intensities and durations of the laser beams.
Karni provides a method for surgical alteration of skin tissue by simultaneous ablation, coagulation and shrinkage, comprising the steps of: (1) selecting a first coherent radiation source characterized by emitting a first coherent radiation having an extinction length in the skin tissue of between

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ultrasound and laser face-lift and bulbous lysing device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ultrasound and laser face-lift and bulbous lysing device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrasound and laser face-lift and bulbous lysing device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2469121

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.