Microelectromechanical accelerometer for automotive...

Land vehicles – Suspension modification enacted during travel – Riding or suspension height

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S006157

Reexamination Certificate

active

06199874

ABSTRACT:

BACKGROUND
The field of the invention relates generally to accelerometry. More specifically, the field of the invention relates to a microelectromechanical accelerometer. In particular, the field of the invention relates to a microelectromechanical accelerometer fabricated from single crystal silicon, with improved performance qualities, for use in automotive and related applications, and a manufacturing method for making such accelerometers at low cost.
There is a need for automotive safety systems to collect more information about vehicle dynamics and external forces acting on the vehicle in order to make intelligent decisions as to what actions, if any, need to be taken to maintain safe vehicle operation. Collecting such information is the role of sensors, such as accelerometers, force sensors, pressure sensors, and the like. With presently available sensor technologies, only a limited number of sensors can be utilized in a vehicle before their cost becomes prohibitively high. What is required is a new, high-performance, low-cost technology for automotive sensors. Silicon-based devices and microelectronics-style manufacturing techniques are anticipated to be required to meet the price-performance objectives of automotive sensors in the future. See G. A. MacDonald, “A Review of Low Cost Accelerometers for Vehicle Dynamics,”
Sensors and Actuators
A21-A23 (1990), pp. 303-307; and Robert E. Sulouff, Jr., “Silicon Sensors for Automotive Applications,”
Proc.
6
th Int. Conf. Solid-State Sensors and Actuators
(Transducers '91), San Francisco, Calif., Jun. 24-28, 1991, pp. 170-176.
There are numerous applications for accelerometers in automobiles, including airbag deployment (front, rear, and side impact), anti-lock brake systems, roll detection, angular rate accelerometers, electronically controlled suspension systems, steering systems, and collision avoidance systems, to name a few. Each application requires accelerometers which operate in different ranges of acceleration (from as little as 10
−6
g to as much as 500 g) and bandwidth, yet all with stringent requirements on reliability, operating environment, self testability, and cost. See G. A. MacDonald, “A Review of Low Cost Accelerometers for Vehicle Dynamics,”
Sensors and Actuators
A21-A23 (1990), pp. 303-307; and Robert E. Sulouff, Jr., “Silicon Sensors for Automotive Applications,” Proc. 6th Int. Conf. Solid-State Sensors and Actuators (Transducers '91), San Francisco, Calif., Jun. 24-28, 1991, pp. 170-176.
Introduction of new technology to automotive applications is primarily driven by price-performance considerations. Although more intelligent safety systems are desired, the cost of those systems must continuously drop while their performance improves. If improving the system's performance requires more sensors, the price of individual sensors and their associated electronics must be correspondingly lower. Assuming a ten to twenty times increase in the number of sensors (not unreasonable considering a fully active suspension is predicted to require ten accelerometers alone) and a ten times reduction in the cost of the overall safety system, then the sensors themselves must be produced for less than one-hundredth ({fraction (1/100)}) their current price. As a concrete example, high performance piezoelectric quartz accelerometers which could be utilized in these automotive applications currently retail for $300. The automobile industry predicts that such sensors will not be incorporated into production vehicles until a technology can be found which can supply the desired sensor for $2 to $3 per unit.
An excellent example of the commercial reality discussed above can be found in automotive airbag systems. Over the past five years a concerted effort in the industry has been made to develop a new airbag deployment subsystem costing less than one-tenth that of the current technology. Substantial investment in time and research funds have been made and functioning devices have been delivered to potential customers. However, these devices cannot meet the cost targets set out for them by the automotive industry. Hence, despite much promise, there is at present virtually no use of these new accelerometer devices in production airbag systems. The following discussion of accelerometers, and particularly micromachined accelerometers, helps to explain why these accelerometers have high cost and have not achieved widespread use in automotive applications.
An accelerometer in general is a device which senses an externally-induced acceleration. There are three major components to an accelerometer, as shown in FIG.
1
. Typically, a sense element is a mass of some sort which moves in response to an applied acceleration vector. This is referred to as a mass, proof mass or seismic mass. The proof mass is held in its resting position by a spring. Some form of displacement transducer is used to measure the amount of motion the proof mass makes in response to an applied acceleration. This is then converted into an electrical output signal and may include signal conditioning electronics to provide a strengthened signal for accurate measurement of the displacement. The output signal from signal conditioning electronics then may be used by additional electronic control circuitry to determine how to respond to the detected acceleration. For example, a charge may be activated for deploying an airbag in response to a sensed acceleration vector above a pre-determined threshold. See Ernest O. Doebelin,
Measurement Systems: Application and Design,
(McGraw-Hill, New York, 1990), Chapter 4.6, incorporated herein by reference.
Present generation production airbag deployment sensors utilize physically “large” mechanical devices, such as a metallic ball held between the poles of a permanent magnet, as the accelerometer to detect impact (deceleration) of sufficient magnitude to signal deployment of the airbag, typically an impact in excess of 50 g (490 m/s
2
). See, for example, U.S. Pat. No. 5,098,122. This type of conventional accelerometer has severe disadvantages in terms of cost, reliability, sensitivity, and self-testing ability. Thus, there is a compelling need for an alternative accelerometer technology for an airbag deployment system which provides low cost, reliable and ultra sensitive operation along with self testing capability.
Moreover, there are numerous other applications for accelerometers in automobiles such as active suspension, anti-lock braking, and active steering, and the necessary broad range of operating characteristics for active steering which cannot be met by current “large” mechanical accelerometer technology. Solid-state accelerometers based on the piezoelectric effect in many cases have been implemented in an attempt to meet the performance requirements of these additional applications. However, such conventional piezoelectric accelerometers, are too expensive and/or physically too large to be practical for implementation in automobiles. See, for example, U.S. Pat. No. 4,945,765, which notes that these large accelerometers can be several cubic inches in size and weigh a pound.
The emerging technology of micromechanical systems (MEMS) has created an entirely new approach to accelerometers (see, for example, Janusz Bryzek, Kurt Petersen, and Wendell McCulley, “Micromachines on the March,”
IEEE Spectrum,
May 1994, pp. 20-31, and Lee O'Connor, “MEMS: Micromechanical Systems,”
Mechanical Engineering,
Feb. 1992, pp.40-47). Numerous patents have been issued for a variety of micromechanical accelerometers over the past fifteen years (for example, U.S. Pat. Nos. 4,483,194; 4,553,436; 4,736,629; 4,945,765; 5,126,812; 5,249,465; and 5,345,824). The earliest of these patents, as well as research papers from the late '70's made reference to the potential application of micromechanical accelerometers in automotive applications based on the potential of MEMS to meet both the cost and performance requirements described above. Yet as far as is known at this time, few MEMS accelerometers are used

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microelectromechanical accelerometer for automotive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microelectromechanical accelerometer for automotive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microelectromechanical accelerometer for automotive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2468881

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.