Polyamidoamine curing agents based on mixtures of fatty and...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From phenol – phenol ether – or inorganic phenolate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S182260, C523S420000, C525S533000

Reexamination Certificate

active

06258920

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to polyamidoamine curing agents for epoxy resins useful for the preparation of coatings and related products.
BACKGROUND OF THE INVENTION
Coatings based on epoxy resins are important industrial products. The largest volume of these products is used for the protection and decoration of large metal or concrete structures such as bridges, ships, industrial tanks, etc., where application of the coating must be performed under ambient conditions. Epoxy coatings of this type have proven themselves to offer an excellent combination of corrosion resistance, water resistance, abrasion resistance, solvent resistance and other desirable coatings properties, and do so in a cost effective manner.
Most epoxy resin coatings designed for ambient application employ polyfunctional amines as the curing agent, either alone or in some cases in combination with other curing agents. Several classes of amine curing agents are used commercially, including aliphatic amines, amine adducts, Mannich bases, polyamides, and polyamidoamines which are also known as amidoamines. They are described more fully in W. R. Ashcroft,
Curing Agents for Epoxy Resins
, in B. Ellis (ed.),
Chemistry and Technology of Epoxy Resins
, Blackie Academic and Professional, London, 1993, pp 37-71.
Among these curing agents, polyamides are a particularly important class of curing agent for the formulation of coatings. Polyamides are comprised of the reaction products of dimerized fatty acid (dimer acid) and polyethyleneamines, and usually a certain amount of monomeric fatty acid which helps to control molecular weight and viscosity. “Dimerized” or “dimer” or “polymerized” fatty acid refers, in a general way, to polymerized acids obtained from unsaturated fatty acids. They are described more fully in T. E. Breuer, ‘Dimer Acids’, in J. I. Kroschwitz (ed.),
Kirk
-
Othmer Encyclopedia of Chemical Technology,
4
th
Ed., Wiley, N.Y., 1993, Vol. 8, pp. 223-237. Dimer acid is usually prepared by the acid catalyzed oligomerization under pressure of certain monomeric fatty acids, usually tall oil fatty acid (TOFA), though sometimes other vegetable acids are substituted. Commercial products generally consist of mostly (>70%) dimeric species, with the rest consisting mostly of trimers and higher oligomers, along with small amounts (generally less than 5%) of monomeric fatty acids. Any of the higher polyethyleneamines can be employed in the preparation of polyamides, such as diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), or pentaethylenehexamine (PEHA), though in actual commercial practice the polyethyleneamine most commonly employed is TETA.
Polyamidoamines are another important class of curing agents. Whereas commercial polyamides are available in viscosities ranging from about 10,000 to 500,000 cP, polyamidoamine viscosities are generally in the range of about 100 to 700 cP. This is clearly an advantage over polyamides when trying to formulate coatings and related products with no solvent, or a minimum amount of solvent. They are the reaction product of a monomeric fatty acid such as TOFA and a polyethyleneamine. The polyethyleneamine most commonly employed in this case is TEPA, even though TETA is a less expensive raw material. The reason that TEPA is used for polyamidoamines is that it yields products that remain completely liquid at temperatures normally encountered in their use and storage. Polyamidoamines based on TETA, on the other hand, generally have a marked tendency to crystallize even at room temperature. This creates considerable difficulties for end users, who must melt the material to obtain a uniform mixture before use. Alternatively, the product could be supplied in a solvent, but this is a disadvantage because environmental regulations now restrict the amount of solvent allowed in formulations, and many epoxy applications require the use of formulations containing no solvent.
Polyamides are employed because they allow for the formulation of coatings with an excellent combination of water and corrosion resistance, most likely due to the hydrophobicity imparted by the fatty nature of the starting materials. They also can offer excellent flexibility and reasonable cure speeds (drying times). Polyamidoamines are used much less in coatings than are polyamides, though they also yield hydrophobic films with good water resistance. Part of the reason is that polyamidoamines generally yield less flexible films than polyamides. However, probably more important is the poor surface appearance that is obtained with the use of polyamidoamines when compared to polyamides.
There is a tendency for many epoxy curing agents to rise to the surface of a coating during the cure. This can leave a greasy film on the surface of the coating known as exudate, which detracts from the appearance, and which can also lead to intercoat adhesion failure if the epoxy is a primer or mid-coat. Under adverse application conditions such as high humidity, a high concentration of the amines at the surface can result in the formation of whitish precipitates on the surface which are probably bicarbonate and/or carbamate salts, a problem known in the industry as blush. Polyamides are much better than polyamidoamines in this regard. Though they may not be completely free of blush and exudate if applied immediately after mixing, it is generally found that if the materials are allowed to react for about 30 minutes to 1 hour before application that the blush and exudate are eliminated. This waiting period is called an induction time.
Polyamidoamines, on the other hand, generally give much higher levels of blush and exudate, and even after several hours of induction they may still exhibit blush and exudate. Polyamidoamines also display a strong tendency to ‘crawl’ and ‘puddle’ on the substrate, and generally yield films that have unacceptable appearance. Flow additives added to such a formulation are generally less than satisfactory in curing this problem. Once again, polyamides are superior to polyamidoamines in this property.
Another important property of an epoxy based coating is the speed at which it cures, or its ‘dry time’. Generally, users of epoxy coatings prefer dry times to be as short as possible for obvious reasons.
Another important property of an epoxy based coating is the mixed viscosity of the epoxy resin and the curing agent. This will clearly have an effect on how much solvent is required to reduce the viscosity of a coating formulation to the point where acceptable application properties are achieved. Usually curing agents are employed at stoichiometric ratios of equivalents of epoxide to equivalents of amine hydrogen close to unity. This stoichiometry generally yields the highest crosslink density final product, and most properties are also maximized at this ratio. Polyamidoamines tend to have amine hydrogen equivalent weights from about 65 to 105. If equivalent weight were higher, curing agent would be a higher percentage of the total amount of material in the epoxy resin and curing agent blend at 1:1 stoichiometry. If the curing agent is significantly lower in viscosity than epoxy resin then increasing the equivalent weight of the curing agent will result in a lower mixed viscosity.
GB 789,108 discloses polyamides made by condensation of a polyamine with a saturated aliphatic acid of the formula HOOC(CH2)nCOOH where n is an integer from 3-12 or an aromatic dicarboxylic acid. Aromatic dicarboxylic acids include isophthalic and terephthalic acid. It is claimed that the solubility and compatibility properties of the polyamides may be improved if up to 60 mole % of the dicarboxylic acid is replaced by a monocarboxylic acid. Suitable monocarboxylic acids include fatty acids and benzoic acid, and it is “understood that in the formation of the polyamides mixtures of polyamines and/or carboxylic acids may be used” (p.2, col.1, I. 18-19.) One example shows a mixture of adipic acid and benzoic acid reacted with TETA, and another shows dimethyl terephthalate reacted wi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polyamidoamine curing agents based on mixtures of fatty and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polyamidoamine curing agents based on mixtures of fatty and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyamidoamine curing agents based on mixtures of fatty and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2468819

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.