Radiant energy – Ionic separation or analysis – Static field-type ion path-bending selecting means
Reexamination Certificate
1999-04-23
2001-09-25
Berman, Jack (Department: 2881)
Radiant energy
Ionic separation or analysis
Static field-type ion path-bending selecting means
C250S283000
Reexamination Certificate
active
06294781
ABSTRACT:
FIELD OF THE INVENTION
The present invention pertains generally to devices and methods for isolating and segregating charged particles of a multi-species plasma into groups according to their masses. More particularly the present invention pertains to devices and methods which combine the functional attributes of a plasma centrifuge with those of a plasma filter. The present invention is particularly, but not exclusively, useful as a device and method for segregating the charged particles of a multi-species plasma into three distinct groups, low-mass particles, intermediate-mass particles, and high-mass particles.
BACKGROUND OF THE INVENTION
Collecting charged particles, all having the same mass, from a multi-species plasma in which there are many charged particles having many different masses, involves the coordination and effective execution of several different tasks. First, of course, it is necessary to generate the multi-species plasma. This particular task can be accomplished in several ways, all of which are well known in the pertinent art. Second, once the multi-species plasma has been generated, it is then necessary to subject the multi-species plasma to physical phenomenon which will cause them to separate in a predictable manner according to their respective masses. Third, in a task that is somewhat related to the second task of separating the charged particles, all charged particles of a particular mass must be directed toward an area where they can be collected. Preferably, this is done while excluding particles of different masses which are directed elsewhere. Finally, the charged particles (ions) are collected.
In general, the physical phenomenon which are employed to separate the charged particles of a multi-species plasma from each other, involve techniques which will cause forces to be exerted on the particles. Importantly, these forces need to be proportional to the mass of the ion. One such technique involves the use of a plasma centrifuge. For example, Krishnan, M.:
Centrifugal Isotope Separation in Zirconium Plasmas; Phys. Fluids
26 (9); pages 2676-2681; September, 1983, describes the use of centrifugal forces for the separation of charged particles (ions). Another technique which can be used to separate charged particles is disclosed in U.S. application Ser. No. 192,945, which was filed by Ohkawa on Nov. 16, 1998, for an invention entitled “Plasma Mass Filter” and which is assigned to the same assignee as the present invention. Unlike the plasma centrifuge techniques, the plasma filter disclosed by Ohkawa relies on the creation of an electromagnetic barrier which can be crossed by only particles having a mass that is greater than a predetermined value.
Heretofore, using plasma centrifuge techniques or plasma filter techniques as mentioned above, for many applications it has been possible to effectively separate high-mass particles from low-mass particles with a two-way split. There are, however, applications which can be envisioned wherein it would be desirable to achieve a more refined separation, such as with a three-way split into high-mass particles, intermediate-mass particles and low-mass particles.
In light of the above it is an object of the present invention to provide a mass segregator which is able to effectively isolate and separate a multi-species plasma into groups of high-mass particles, intermediate mass particles, and low-mass particles. It is another object of the present invention to provide a mass segregator which is able to effectively integrate the functional attributes of a plasma centrifuge with the functional attributes of a plasma mass filter to achieve effective separation of charged particles in a multi-species plasma according to their mass. Still another object of the present invention is to provide a mass segregator which can specifically isolate charged particles of a multi-species plasma that have masses greater than a predetermined value, while simultaneously separating charged particles of lesser mass from each other according to their respective masses. Yet another object of the present invention is to provide a mass segregator which is industrially easy to manufacture, relatively easy to use, and comparatively cost effective.
SUMMARY OF THE PREFERRED EMBODIMENTS
A device for segregating charged particles in a multi-species plasma includes a hollow enclosure which surrounds and defines a substantially annular shaped chamber. For purposes of spatially orienting and defining the device of the present invention, the annular shaped enclosure lies in a plane, and is radially positioned around a central axis. In particular, the central axis is substantially perpendicular to the plane of the enclosure/chamber. Further, the enclosure has a first wall and a second wall which are distanced from each other to establish the chamber therebetween. In an outward radial direction from the central axis, the chamber itself is functionally divided into a collection section for collecting light masses, an intermediate section that facilitates mass separation, and a filter section for separately collecting high and intermediate masses. For the device of the present invention, all of these sections are in fluid communication with each other.
For a preferred embodiment of the present invention, both the first wall and the second wall in the filter section of the chamber are oriented to be generally equidistant from each other and substantially parallel to the central axis and the first and second walls are also electrically biased relative to each other. Specifically, in the filter section, the first wall is at a first (largest) radial distance from the central axis and is electrically grounded. For the purposes of subsequent mathematical expressions, this outer wall in the filter chamber (i.e. first wall) has a radial distance of magnitude “a”. Also, in the filter section, the second wall is located inside the first wall at a second radial distance from the central axis and is biased positively. Thus, the second radial distance is less than the outer (first) radial distance, and is some value less than “a”. Somewhat like the filter section, both the first wall and the second wall in the light mass collection section of the chamber are generally equidistant from each other and are oriented substantially parallel to the central axis. In the light mass collection section, however, the second wall is farther from the central axis than is the first wall hence, reversing the sign of the electric field and avoiding the mass filtering. Specifically, in the light mass collection section the second wall of the chamber is at a third radial distance from the central axis and the first wall is at a fourth radial distance from the central axis. In this case, the third radial distance is greater than the fourth radial distance, and both have some value less than “a”. Between the light mass collection section and the filter section, the intermediate section connects the light mass collection section of the chamber in fluid communication with the filter section of the chamber.
In accordance with the present invention, the first wall and the second wall in the intermediate section of said chamber are continuations of these respective walls in the filter section and the light mass collection section. Further, they are generally parallel to each other and are inclined with the central axis at an angle, &agr;. For one particular embodiment of the present invention, the first wall and the second wall in the intermediate section are perpendicular to the central axis, i.e. the angle &agr; is equal to substantially ninety degrees (&agr;=90°). Thus, for this configuration, the chamber has an inverted U-shaped cross sectional configuration. It is to be appreciated, however, that the angle &agr; can have other values. For instance, the angle &agr; can be selected to give the chamber a doglegged configuration wherein &agr; is greater than 90°.
The device of the present invention also includes a magnet for generating a magnetic field in the chamber. Preferably
Archimedes Technology Group, Inc.
Berman Jack
Nydegger & Associates
LandOfFree
Electromagnetic mass distiller does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Electromagnetic mass distiller, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electromagnetic mass distiller will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2467458